Quick Start Guide

Prestressed Slabs
1 Scope

Slab prestressing provides an economical way to decrease the amount of required reinforcement (ULS) while allowing for larger spans with slender slabs and better structural performance regarding crack and deflection control. For similar economical graphical input and FEA analysis, SOFiSTiK software offers special features within the Structural Desktop SSD and SOFiPLUS. In the following quick start guide the different tasks and features will be explained briefly.

Required versions: SSD 10.64-23 or higher for analysis / SOFiPLUS(-X) 16.4/17.1-16 or higher for the graphical input.
2 System 2D Prestressed Slab and SSD Tasks for Slab Prestress

When starting a new project, the System Information dialogue offers a new system type: 2D Prestressed Slab. This system type allows for plane slab systems including membrane effects and varying slab thicknesses with eccentric elements.

For 3D structures and inplane restraints use the 2D Prestressed Slab system type.

![System Information dialogue for example project](image)

Figure 1: System Information dialogue for example project

After confirming the project setting, the SSD Task tree offers two special tasks.
The Task Prestressing System provides the possibility to select various predefined prestressing systems which are provided by the software. A preselection is performed according to the defined design code of the project.

The textfile `tendon.tab` in the sofistik.23 folder contains the PT systems library.

Individual prestressing systems can be defined by the user generating the file `tendon_usr.tab`.
Example System: SUSPA/DSI® Monostrands 150 mm² acc. ETA-03/0036:

Company: SUSPA
System: ETA Monolitzenspannverfahren ohne Verbund 150mm²
Tendon: SUSPA 6-4 Y 1770 (Pack of 4 Monostrands)

Check of the prestressing force:

\[P_{0, \text{max}}: \text{with } f_{t0.1k} = 1520 \text{ N/mm}^2 = 0.9 \times 1520 \text{ N/mm}^2 \times 600 \text{ mm}^2 = 820 \text{ kN} \]

The corresponding prestressing steel Y1770 (EN1992) can be generated in advance using the Task: Materials or directly in the Prestressing System Task:

![Figure 4: Material Strength Properties](image)

Task: Analysis of Slab Prestress

The Task Analysis of Slab Prestress computes the resulting forces for existing slab tendons, per default the loadcase number 700 and the action P is assigned to the results.
3 Graphical Input of Tendons with SOFiPLUS(-X)

The tendons layout can be defined easily within the graphical pre-processor SOFiPLUS(-X), the tendons are generated in ground view, computation of the complete tendon layout including friction loss calculation is performed during the ‘Export’ (Meshing) of the system.

Only important boundary conditions, as support lines, stop lines, distance of tendons to the concrete faces and e.g. the transition lengths of the free tendon layout (Freie Spanngliedlage) have to be specified by the user.

Figure 5: Task Analysis of Slab Prestress

Figure 6: Free Tendon Layout (Freie Spanngliedlage) [1]

SOFiPLUS Toolbox: Prestressing

1 Maier, K.; Wicke, M.; Die freie Spanngliedlage. Beton- und Stahlbetonbau 95, 2000, Heft 2 Pp.: 62
The input of tendons and their layout is done in SOFiPLUS using the Toolbox Prestressing. Three icons for the input of three elements: Input of Tendons, Input of Support Lines and Input of so called Stop Lines are available, their input options and the modification of existing elements is explained below.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Task</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input of Tendon
Task: Generates new Tendons in ground view
Options:
• AutoCAD lines and polylines without kinks can be directly transferred into tendons
• Points picked generate straight tendons parallel to the global x- or y-Axis
• Tendons along a side of the structure are best generated using the ‘distribute along line’ option
• Skew layouts are possible using user coordinate systems (UCS)
Modification of tendons: The tendon dialogue opens with a double-click on one or more selected tendon elements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input of Support Line
Task: Generates support lines which define the height of tendon elements crossing the line
Options:
• Direct input of support lines
• Curved object can be transferred into support lines
Modification of support lines: The properties (i.e. distance of tendon from concrete face along line) of a support line are edited using the AutoCAD properties dialogue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input of Stop Line
Task: Generates stop lines out of AutoCAD objects which cause the intersecting tendons to end
Options:
• Selection of Lines etc. to become a stop line
Modification of stop lines: The stop line objects are copied in a separate layer, modification is possible in the same way as for all AutoCAD objects</td>
<td></td>
</tr>
</tbody>
</table>
SOFiPLUS Tendon Dialogue

Double clicking on one or more selected tendon elements opens the SOFiPLUS Dialog Tendon, here the necessary input for tendon parameters is possible.

The arrow on one end of the tendon indicates the ‘left’ end

Figure 7: Tendon dialogue

- **Prestress direction**: Definition of active and passive anchor side
- **Kind of prestressing**
- **Tendon geometry**: Free tendon geometry or cubic spline geometry can be selected
- **Straight part in top position**: Length of the straight part over highpoints (columns etc.), *only for free tendon layout*
- **Transition**: Transition length of the free tendon layout, *only for free tendon layout*
- **Distances of axis to upper and lower concrete edge**
Figure 8: Formula for transition length [1]

\[l = \frac{72 \cdot E \cdot l_1}{g} \cdot \left(\frac{m + m_e}{m} \right) \]

Ergibt für die Monolitse F150 mit \(l = 299.2 \text{ mm}^2 \),
\(E = 195000 \text{ N/mm}^2 \), \(g = 15.05 \text{ N/m} \):
\(l = 130,504 \cdot \frac{4}{m_1 + a_2} \cdot \frac{a_1, e_1}{[\text{cm}]} \).

Figure 9: The Points tab allows for geometry modification of single tendons

Figure 10: Input of tendon distance for a support line
Analysis and Post Processing

After the definition of the tendons with SOFiPLUS, the SSD is used to control the further analysis and the post processing, the Task Linear Analysis is used to calculate all loadcases except prestress, here the aforementioned Task Analysis of Slab Prestress is employed. The reports of all calculation steps are managed using the URSULA button of the SSD, further reference on the SSD can be found via Menu ‘Help’ Quick Reference.

The complete tendons friction calculation results are available as <projectname>_tnd.plb via the Menu ‘Open’ of URSULA.
Figure 13: Tendon axis of free tendon layout

Figure 14: Tendon stresses (dashed line: $P_{m0,max} = 0.945 \times P_{0,max} = 0.85 \times 1520 \text{ N/mm}^2$); Maximum tendon force indicated red.

For simplified consideration of creep, shrinkage and relaxation losses, the Task Define Superpositioning is used to assign a factor (e.g. 0.88 for 12% CSR losses) to
the prestressing loadcase in the automatically generated loadcase combinations (e.g. EC2-2004, ULS and SLS combination).

Figure 15: Factor for simple CSR consideration

The design in ULS and SLS of the prestressed slab is carried out using the standard design Tasks: Design ULS/SLS – area elements.

Remark on punching design for prestressed slabs:

Using BEMESS 11.90-23 the inclination and force of tendons crossing the punching area is automatically detected and considered in the punching design and checks, the mean compressive stress sigma-cd is considered for EC2-2004 and DIN 1045-1, selecting extensive text output for punching the prestress reduction force Vpd and the individual contributions can be checked.
Punching Design (EC 2 1992-1-1:2004(E))

Node number: 1
X = 6.000 [m] Y = 6.000 [m]

Max. shear force Vd = 105.3 [kN] LC = 2:102 via QUAD connecting forces

Prestress reduced Vd= 188.0 [kN] V-Ed= 517.9 [kN] in perimeter 1

12.0 [o/o] losses prestress due to creep and shrinkage are included in Vd.
dz/ds=inclination, alpha=horizontal deviation, dVPD=shear force positive=relieve

Perimeter 1:

- Tendon no. 2 Vd = 675.0 [kN] dz/ds=0.02D alpha= 0.000 [*] dVPD= 13.2 [kN]
- Tendon no. 4 Vd = 658.5 [kN] dz/ds=0.028 alpha= 0.000 [*] dVPD= 14.7 [kN]
- Tendon no. 7 Vd = 674.0 [kN] dz/ds=0.027 alpha= 9.010 [*] dVPD= 18.2 [kN]
- Tendon no. 8 Vd = 674.0 [kN] dz/ds=0.027 alpha= 9.010 [*] dVPD= 18.2 [kN]
- Tendon no. 10 Vd = 658.5 [kN] dz/ds=0.028 alpha= 15.911 [*] dVPD= 14.8 [kN]
- Tendon no. 11 Vd = 658.5 [kN] dz/ds=0.028 alpha= 15.911 [*] dVPD= 14.8 [kN]

Perimeter 2:

- Tendon no. 2 Vd = 675.7 [kN] dz/ds=0.035 alpha= 0.000 [*] dVPD= 24.0 [kN]
- Tendon no. 4 Vd = 659.4 [kN] dz/ds=0.045 alpha= 0.000 [*] dVPD= 20.1 [kN]
- Tendon no. 7 Vd = 677.3 [kN] dz/ds=0.050 alpha= 5.567 [*] dVPD= 33.5 [kN]
- Tendon no. 8 Vd = 678.1 [kN] dz/ds=0.046 alpha= 5.222 [*] dVPD= 30.7 [kN]
- Tendon no. 10 Vd = 659.4 [kN] dz/ds=0.048 alpha= 10.476 [*] dVPD= 27.6 [kN]
- Tendon no. 11 Vd = 659.4 [kN] dz/ds=0.048 alpha= 10.476 [*] dVPD= 27.6 [kN]

Circular column dS = 0.400 [m]
Plate thickness h-slab = 0.260 [m] d = 0.220 [m]

- Perimeter at 2.0*d = 0.440 [m] u tot= 4.021 [m] u = 4.021 [m]
- Min. reinforcement at upper = 7.05 [kN/m] (Min.design moment > inner column)
- Normal stress sigma cd = -1.19 [MPa]
- Tension reinforcement ra = 9.68 [cm²/m] ra e = 0.44 [o/o] Vrd = 431.1 [kN/m]
- V-Ed = 1.15Vd = 517.9 [kN/m] <= 431.1 [kN/m]

Figure 16: Extensive BEMESS output for punching design with tendons

Example

Prestressed Slab
5 Example System

Example Slab System according EC2-2004

Lx = 5/8/6 m and Ly = 6/6m

Columns: diameter 40 cm/ height 3.00 m/ C 30/37

Slab thickness: t = 26 cm

Concrete: C 30/37

Rsteel: S 500

Prestressing steel: S Y1770

Concrete cover: 3 cm

Permanent loads: automatic selfweight + 1.50 kN/m²

Live loading: 3.25 kN/m²