Benchmark Example No. 12

Cantilever in Torsion

SOFiSTiK | 2018
This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.
1 Problem Description

The problem consists of a cantilever beam as shown in Fig. 1. The tip of the cantilever is offsetted in y-direction by $\Delta_y = l/200 = 2.5 \text{ cm}$, creating a geometrical imperfection. The beam is loaded with a transverse force P_z and an axial force P_x. The imperfection acts as a lever arm for the loading, causing a torsional moment. The torsional moment at the support with respect to the local and global coordinate system is determined.

![Figure 1: Problem Description](image)

2 Reference Solution

In order to account for the effect of the geometrical imperfection on the structure, second-order theory should be used, where the equilibrium is established at the deformed system. According to the equilibrium of moments at the deformed system, with respect to the global x-axis, the torsional moment at the support $M_{x_{\text{global}}}$ is:

$$M_{x_{\text{global}}} = P_x (u_y + \Delta_y) - P_y u_z ,$$ \hfill (1)

whereas by the local x-axis the torsional moment $M_{x_{\text{local}}}$ is:

$$M_{x_{\text{local}}} = P_x u_y + P_x \left(\frac{\Delta_y}{l}\right) u_z ,$$ \hfill (2)

where l is the length of the beam, Δ_y the initial geometrical imperfection and P_x is negative for compression.
3 Model and Results

The properties of the model [1] [2] are defined in Table 1. A standard steel material is used as well as a standard hot formed hollow section with properties according to DIN 59410, DIN EN 10210-2. A safety factor $\gamma_M = 1.1$ is used, which according to DIN 18800-2 it is applied both to the yield strength and the stiffness. Furthermore, the self weight, the shear deformations and the warping modulus C_M are neglected. At the support the warping is not constrained.

<table>
<thead>
<tr>
<th>Material Properties</th>
<th>Geometric Properties</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S\ 355$</td>
<td>$l = 5\ m$</td>
<td>$P_z = 10\ kN$</td>
</tr>
<tr>
<td>$\gamma_M = 1.1$</td>
<td>$RRo/SH\ 200 \times 100 \times 10$ [3]</td>
<td>$P_x = 100\ kN$</td>
</tr>
<tr>
<td>$C_M = 0$</td>
<td>$\Delta_y = 2.5\ cm$</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Results

<table>
<thead>
<tr>
<th></th>
<th>u_y</th>
<th>u_z</th>
<th>M_{global}</th>
<th>M_{local}</th>
<th>P_{buck}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[cm]</td>
<td>[cm]</td>
<td>[kNcm]</td>
<td>[kNcm]</td>
<td>[kN]</td>
</tr>
<tr>
<td>SOF.</td>
<td>3.209</td>
<td>10.204</td>
<td>57.08</td>
<td>26.98</td>
<td>163.7</td>
</tr>
<tr>
<td>Ref.[4]</td>
<td>3.20</td>
<td>10.2</td>
<td>57.0</td>
<td>26.9</td>
<td>164</td>
</tr>
</tbody>
</table>

The corresponding results are presented in Table 2. Figure 2 shows the deformed shape of the structure and the nodal displacements for the z and y direction. From the presented results, we can observe that the values of the moments are correctly computed. Here has to be noted that the reference results are according to [1], where they are computed with another finite element software, and not with respect to an analytical solution.
4 Conclusion

This example presents a case where torsion is induced to the system because of an initial geometrical imperfection. It has been shown that the behaviour of the beam is captured accurately.

5 Literature