Benchmark Example No. 16

Torsion due to Biaxial Bending

SOFiSTiK | 2018
VERIFICATION MANUAL
BE16: Torsion due to Biaxial Bending

VERIFICATION MANUAL, Version 2018-15.2
Software Version: SOFiSTIK 2018

Copyright © 2020 by SOFiSTIK AG, Oberschleissheim, Germany.

This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTIK AG. SOFiSTIK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTIK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.

Front Cover
1 Problem Description

The problem consists of a beam subjected to transverse load P_z and a lateral load P_y, as shown in Fig. 1. The effect of torsion due to biaxial bending is examined.

![Figure 1: Problem Description](image)

2 Reference Solution

For an I-beam subjected to biaxial bending, without the action of a normal force, it follows directly from the beam theory that a torsional moment will inevitably appear, even if the cross-section is double symmetric, the load is centrically applied, and the beam is statically determined. In order to account for this effect, third order theory has to be utilised.

3 Model and Results

The properties of the model [1] are defined in Table 1. A standard steel material is used as well as a cross-section with a standard rolled steel shape. A safety factor $\gamma_M = 1.1$ is used, which according to DIN 18800-2 it is applied both to the yield strength and the stiffness. Furthermore, the self weight and the shear deformations are neglected. At the supports the warping is not constrained.

![Table 1: Model Properties](table)
The results are presented in Table 2. It has to be noted that the reference results are according to [1] and [4], where they are computed with another finite element software, and not with respect to an analytical solution.

<table>
<thead>
<tr>
<th></th>
<th>(C_M = 125900 \text{ [cm}^6\text{]})</th>
<th>Ref. [1]</th>
<th>(C_M = 0)</th>
<th>Ref. [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_x \text{ [rad]})</td>
<td>0.0316</td>
<td>0.0315</td>
<td>0.0321</td>
<td>0.0321</td>
</tr>
<tr>
<td>(M_x \text{ [kN m]})</td>
<td>0.183</td>
<td>0.185</td>
<td>0.185</td>
<td>0.189</td>
</tr>
<tr>
<td>(M_y \text{ [kN m]})</td>
<td>24.88</td>
<td>24.9</td>
<td>24.85</td>
<td>24.9</td>
</tr>
<tr>
<td>(M_z \text{ [kN m]})</td>
<td>5.57</td>
<td>5.6</td>
<td>5.71</td>
<td>5.7</td>
</tr>
</tbody>
</table>

4 Conclusion

This example presents a case where torsion is induced to the system because of biaxial bending. It has been shown that the behaviour of the beam is captured accurately.

5 Literature

