This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.
1 Problem Description

The problem consists of a rigid rectangular frame, with an imperfection at the columns, subjected to a uniform distributed load q across the span and to various single loads, as shown in Fig. 1. For the linear case, the structure is subjected to the uniform load only, whereas for the nonlinear case, all defined loads including the imperfection are considered. The response of the structure is determined and compared to the analytical solution.

![Figure 1: Problem Description](image)

2 Reference Solution

For the linear case, where only the distributed load is considered, the moments M are determined in terms of the shear force H as follows:

$$H_1 = H_2 = \frac{ql^2}{4h(k + 2)}$$ \hspace{1cm} (1)
\[M_1 = M_2 = \frac{Hh}{3} \] \hspace{1cm} (2)

\[M_3 = M_4 = M_1 - H_1h \] \hspace{1cm} (3)

where \(k = I_bh / I_c \). For the nonlinear case, in order to account for the effect of the normal force and the imperfections on the determination of the resulting forces and moments, second order theory has to be used. The moments at nodes 1 – 4 are determined in dependency of the column characteristic ratio \(\epsilon = l_c\sqrt{N/El_c} \), giving the influence of the normal force \(N = F + q/2 \) with respect to the column properties, length \(l_c \) and bending stiffness \(El_c \). Further information on the analytical formulas can be found in Schneider [1].

3 Model and Results

The properties of the model are defined in Table 1. The frame has an initial geometrical imperfection at the columns of linear distribution \(\psi_0 = 1/200 \), with a maximum value of 25 mm at nodes 3 and 4. The normal force \(N \), used to determine \(\epsilon \), is calculated to be 430 kN at the columns and the ratio \(\epsilon = 1.639 \). For the linear case the results are presented in Table 3 and they are compared to the analytical solution calculated from the formulas presented in Section 2. For the nonlinear case, the results are presented in Table 2 and they are compared to the reference example provided in Schneider [1].

Table 1: Model Properties

<table>
<thead>
<tr>
<th>Material Properties</th>
<th>Geometric Properties</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>(El_c = 6000 \text{ kNm}^2)</td>
<td>(l = 6 \text{ m})</td>
<td>(q = 10 \text{ kN/m})</td>
</tr>
<tr>
<td>(El_b = 4000 \text{ kNm}^2)</td>
<td>(h = 5 \text{ m})</td>
<td>(H = 20 \text{ kN})</td>
</tr>
<tr>
<td>(\psi_0 = 1/200)</td>
<td></td>
<td>(F = 400 \text{ kN})</td>
</tr>
</tbody>
</table>

Table 2: Nonlinear Case Results

<table>
<thead>
<tr>
<th></th>
<th>Ref. [1]</th>
<th>SOF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1 [\text{kNm}])</td>
<td>38.2</td>
<td>38.62</td>
</tr>
<tr>
<td>(M_2 [\text{kNm}])</td>
<td>22.5</td>
<td>22.52</td>
</tr>
<tr>
<td>(M_3 [\text{kNm}])</td>
<td>58.1</td>
<td>58.02</td>
</tr>
<tr>
<td>(M_4 [\text{kNm}])</td>
<td>58.8</td>
<td>58.79</td>
</tr>
<tr>
<td>(\delta [\text{mm}])</td>
<td>65.3</td>
<td>65.44</td>
</tr>
</tbody>
</table>
Figure 2: Bending Moments

Table 3: Linear Case Results

<table>
<thead>
<tr>
<th></th>
<th>Ref. [Sect. 2]</th>
<th>SOF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_1 = H_2$ [kN]</td>
<td>5.54</td>
<td>5.52</td>
</tr>
<tr>
<td>$M_1 = M_2$ [kN m]</td>
<td>9.23</td>
<td>9.18</td>
</tr>
<tr>
<td>$M_3 = M_4$ [kN m]</td>
<td>18.46</td>
<td>18.43</td>
</tr>
</tbody>
</table>

Figure 3: Deformed Shape

4 Conclusion

This example examines a rigid frame under different loading conditions. It has been shown that the behaviour of the structure is captured accurately for both the linear and the nonlinear analysis.

5 Literature