Benchmark Example No. 30

Steel column with a class 4 cross-section
This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.
1 Problem Description

The problem consists of a simply supported beam with a box cross-section shown in Fig. 1. The design element should be verified against uniform compression as shown in Fig. 2.

![Figure 1: Geometry of box cross-section](image)

This benchmark example is used to verify and compare the SOFiSTiK results with the ECCS reference example [1].
2 Reference Solution

This example is concerned with the cross-section and buckling resistance of steel members. It deals with the spatial behavior of the beam and the occurrence of lateral torsional buckling as a potential mode of failure. The content of this problem is covered by the following parts of EN 1993-1-1:2005 [2]:

- Structural steel (Section 3.2)
- Classification of cross-sections (Section 5.5)
- Buckling resistance of members (Section 6.3)
- Method 2: Interaction factors k_{ij} for interaction formula in 6.3.3(4) (Annex B)

and parts of EN 1993-1-5:2006 [3]

- Effective cross section (Section 4.3)
3 Model and Results

Table 1: Model Properties

<table>
<thead>
<tr>
<th>Material Properties</th>
<th>Cross-Section Properties</th>
<th>Geometric Properties</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 275</td>
<td>h = 600 mm</td>
<td>H = 4.0 m</td>
<td>N = 5500 kN</td>
</tr>
<tr>
<td>E = 210000 N/mm²</td>
<td>b = 600 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_y = 275 N/mm²</td>
<td>t_{f_1} = 10 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν = 0.3</td>
<td>t_{f_2} = 20 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G = 81000 N/mm²</td>
<td>t_w = 10 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_{M0} = 1.0</td>
<td>A = 29400 mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_{M1} = 1.0</td>
<td>I_y = 174800.0 cm⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_z = 153200.0 cm⁴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Results

<table>
<thead>
<tr>
<th></th>
<th>SOF. (Iterative)</th>
<th>SOF. (SIG NEFF)</th>
<th>Ref. [4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{eff} [cm²]</td>
<td>257.6</td>
<td>244.6</td>
<td>247.78</td>
</tr>
<tr>
<td>I_y,eff [cm⁴]</td>
<td>155600.0</td>
<td>149700.0</td>
<td>154000.0</td>
</tr>
<tr>
<td>e_{N,y} [mm]</td>
<td>25.78</td>
<td>31.90</td>
<td>30.1</td>
</tr>
<tr>
<td>b_{f1,1} [mm]</td>
<td>218.4</td>
<td>211.2</td>
<td>210.2</td>
</tr>
<tr>
<td>b_{f1,eff} [mm]</td>
<td>143.2</td>
<td>167.6</td>
<td>159.5</td>
</tr>
<tr>
<td>b_{f1,2} [mm]</td>
<td>218.4</td>
<td>211.2</td>
<td>210.2</td>
</tr>
<tr>
<td>b_{w2,1} [mm]</td>
<td>229.7</td>
<td>210.8</td>
<td>209.3</td>
</tr>
<tr>
<td>b_{w2,eff} [mm]</td>
<td>110.6</td>
<td>163.4</td>
<td>151.3</td>
</tr>
<tr>
<td>b_{w2,2} [mm]</td>
<td>229.7</td>
<td>210.8</td>
<td>209.3</td>
</tr>
<tr>
<td>b_{w4,1} [mm]</td>
<td>229.7</td>
<td>210.8</td>
<td>209.3</td>
</tr>
<tr>
<td>b_{w4,eff} [mm]</td>
<td>110.6</td>
<td>163.4</td>
<td>151.3</td>
</tr>
<tr>
<td>T_{Tot utilisation}</td>
<td>-</td>
<td>0.98</td>
<td>0.95</td>
</tr>
<tr>
<td>\bar{\lambda}_{LT}</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>\bar{\lambda}_{y}</td>
<td>0.177</td>
<td>0.172</td>
<td>0.173</td>
</tr>
</tbody>
</table>
Table 2: (continued)

<table>
<thead>
<tr>
<th></th>
<th>SOF. (Iterative)</th>
<th>SOF. (SIG NEFF)</th>
<th>Ref. [4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\lambda}_z$</td>
<td>0.189</td>
<td>0.184</td>
<td>0.185</td>
</tr>
<tr>
<td>k_{yy}</td>
<td>1.082</td>
<td>1.085</td>
<td>1.084</td>
</tr>
<tr>
<td>k_{zy}</td>
<td>0.866</td>
<td>0.868</td>
<td>0.867</td>
</tr>
<tr>
<td>$nm - y$</td>
<td>0.955</td>
<td>0.995</td>
<td>0.973</td>
</tr>
<tr>
<td>$nm - z$</td>
<td>0.919</td>
<td>0.960</td>
<td>0.940</td>
</tr>
</tbody>
</table>
4 Design Process

Design Loads

\[N_{Ed} = 5500 \text{ kN} \]

1. CROSS-SECTION RESISTANCE

STEP 1: Cross-Section class check

\[b_{f1} = b_{f2} = b - 2 \cdot t_w = 600 - 2 \cdot 10 = 580 \text{ mm} \]
\[h_w = h - t_{f1} - t_{f2} = 600 - 10 - 20 = 570 \text{ mm} \]

Upper flange (compression):

\[\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.924 \]

\[\frac{b_{f1}}{t_{f1}} = \frac{580}{10} = 58.0 > 42 \cdot \varepsilon = 42 \cdot 0.924 = 38.8 \text{ (Class 4)} \]

Lower flange (compression):

\[\frac{b_{f2}}{t_{f2}} = \frac{580}{20} = 29.0 < 42 \cdot \varepsilon = 38.8 \text{ (Class 3)} \]

Class 3 - but it also fulfils requirements for Class 1 (33 \cdot \varepsilon)

Web (compression):

\[\frac{h_w}{t_w} = \frac{570}{10} = 57.0 > 42 \cdot \varepsilon = 38.8 \text{ (Class 4)} \]

The cross-section is classified as Class 4.

STEP 2: Calculating the effective properties under uniform axial compression

\[^1\text{The sections mentioned in the margins refer to DIN EN 1993-1-1:2005 [5] unless otherwise specified.}\]
Determination of the characteristics of the gross cross section

\[S_y = b \cdot t_f \cdot \left(h - \frac{t_f + t_f}{2} \right) + 2 \cdot h_w \cdot t_w \cdot \left(\frac{h_w + t_f}{2} \right) \]

\[S_y = \frac{1}{29400} \left[600 \cdot 10 \cdot \left(600 - \frac{10 + 20}{2} \right) + 2 \right. \\
\left. \cdot 570 \cdot 10 \cdot \left(600 - \frac{570 + 20}{2} \right) \right] \]

\[S_y = 6.873 \cdot 10^6 \text{ mm}^3 \]

\[r_t = \frac{S_y}{A} = \frac{6.873 \cdot 10^6}{29400.0} = 233.8 \text{ mm} \]

where:

- \(S_y \) is the first moment of area of the gross cross section with respect to the centroid of the lower flange (y-y axis),
- \(r_t \) is the distance from the centroid of the lower flange to the centroid of the gross cross-section

Calculation of effective width of the upper flange

\[\psi = 1.0 \rightarrow k_\sigma = 4.0 \]

\[\bar{\lambda}_p = \frac{b_{f1}}{t_{f1} \cdot 28.4 \cdot \varepsilon \cdot \sqrt{k_\sigma}} = \frac{580}{10 \cdot 28.4 \cdot 0.924 \cdot \sqrt{4.0}} = 1.105 \]

\[\bar{\lambda}_p = 1.105 > 0.5 + \sqrt{0.085 - 0.055 \cdot \Psi} \]

\[= 0.5 + \sqrt{0.085 - 0.055 \cdot 1} = 0.673 \]
Steel column with a class 4 cross-section

\[\rho = \frac{\lambda_p - 0.055 \cdot (3 + \psi)}{\lambda_p^2} = \frac{1.105 - 0.055 \cdot (3 + 1)}{1.105^2} = 0.725 \]

\[b_{\text{eff},f} = \rho \cdot b_{f1} = 0.725 \cdot 580 = 420.5 \text{ mm} \]

\[b_{\text{ef},f} = b_{e2,f} = 0.5 \cdot b_{\text{eff},f} = 0.5 \cdot 420.5 = 210.2 \text{ mm} \]

Calculation of effective width of the web

\[\psi = 1.0 \rightarrow k_\sigma = 4.0 \]

\[\bar{\lambda}_p = \frac{h_w}{t_w \cdot 28.4 \cdot \varepsilon \cdot \sqrt{k_\sigma}} = \frac{570}{10 \cdot 28.4 \cdot 0.924 \cdot \sqrt{4.0}} = 1.086 \]

\[\bar{\lambda}_p = 1.086 > 0.5 + \sqrt{0.085 - 0.055 \cdot \psi} \]

\[\bar{\lambda}_p = 1.086 > 0.5 + \sqrt{0.085 - 0.055 \cdot 1} = 0.673 \]

\[\rho = \frac{\bar{\lambda}_p - 0.055 \cdot (3 + \psi)}{\bar{\lambda}_p^2} = \frac{1.086 - 0.055 \cdot (3 + 1)}{1.086^2} = 0.734 \]

\[b_{\text{eff},w} = \rho \cdot h_w = 0.734 \cdot 570 = 418.7 \text{ mm} \]

\[b_{e1,w} = b_{e2,w} = 0.5 \cdot b_{\text{eff},w} = 0.5 \cdot 418.7 = 209.3 \text{ mm} \]

Determination of characteristics of effective cross section considering effective widths of the upper flange and webs in uniform compression

\[x_f = b_{f1} - b_{\text{eff},f} = 580.0 - 420.5 = 159.5 \text{ mm} \]

\[x_w = h_w - b_{\text{eff},w} = 570.0 - 418.7 = 151.3 \text{ mm} \]

\[A_{\text{eff}} = [A - (x_f \cdot t_{f1} + 2 \cdot x_w \cdot t_w)] \]

\[A_{\text{eff}} = 29400 - (159.5 \cdot 10 + 2 \cdot 151.3 \cdot 10) = 24778.1 \text{ mm}^2 \]

\[r_f = h - \frac{t_{f1} + t_{f2}}{2} - r_t = 600 - \frac{10 + 20}{2} = 351.2 \text{ mm} \]

\[r_w = h_w + \frac{t_{f2}}{2} - r_T - b_{e1,w} - \frac{x_w}{2} \]

\[r_w = 570 + \frac{10}{2} - 233.8 - 209.3 - \frac{151.3}{2} = 61.2 \text{ mm} \]

\[e_{N,Y} = \frac{2 \cdot r_w \cdot x_w \cdot t_w + r_f \cdot x_f \cdot t_{f1}}{A_{\text{eff}}} \]

\[e_{N,Y} = \frac{2 \cdot 61.2 \cdot 151.3 \cdot 10 + 351.2 \cdot 159.5 \cdot 10}{24778.1} = 30.1 \text{ mm} \]

\[r_{Teff,N} = r_T - e_{N,Y} = 233.8 - 30.1 = 203.7 \text{ mm} \]

where:

\[e_{N,Y} \] is the shift of centroid of the effective area relative to the centre of gravity of the gross cross section determined assuming uniform
Steel column with a class 4 cross-section

Axial compression.

\(r_{Teff,N} \) is the distance from the centroid of the bottom flange to the centroid of the effective cross-section under uniform compression.

STEP 3: Calculating the effective properties assuming the cross-section is subject only to bending stresses

The effective section modulus \(W_{eff,y} \) is determined on the cross-section subject only to bending moment.

Cross section class check

Upper flange (compression the same as in 1): Class 4

![Figure 4: Effective area for bending](image)

Determination of characteristics of effective cross section considering effective widths of the upper flange (calculation of effective width of the upper flange is already done in section 1) and gross cross section of the web:

\[
A_{eff} = A - x_f \cdot t_f
\]

\[
A_{eff} = 29400 - 159.5 \cdot 10 = 27804.9 \text{ mm}^2
\]

\[
\Delta r_{T,m} = r_f \cdot x_f \cdot t_f \cdot A_{eff}\frac{351.2 \cdot 159.5 \cdot 10}{24778.1} = 20.1 \text{ mm}
\]

\[
r_{Teff,M} = r_T - \Delta r_{T,M} = 233.8 - 20.1 = 213.6 \text{ mm}
\]

\[
I_{eff,y}^I = I_y + A_{eff} \cdot \Delta r_{T,M}^2 - \left(\frac{x_f \cdot t_f^3}{12} + x_f \cdot t_f \cdot (r_f + \Delta r_{T,M})^2 \right)
\]

\[
I_{eff,y}^I = 1.748 \cdot 10^9 + 27804.9 \cdot 20.1^2 - \left(\frac{159.5 \cdot 10^3}{12} +
\right)
\]
Steel column with a class 4 cross-section

\[159.5 \cdot 10 \cdot (351.2 + 20.1)^2 = 1.539 \cdot 10^9 \text{ mm}^4 \]

where:

\[t_{\text{eff, y}} \] is the effective second moment of area (cross section under pure bending) with respect to y-y considering the effective width of the upper flange.

The effective section moduli at the upper and lower edge of the girder’s web, \(W_{\text{eff, y,1}} \) and \(W_{\text{eff, y,2}} \) are, respectively:

\[
W_{\text{eff, y,1}} = \frac{t_{\text{eff, y}}}{h_w + \frac{t_{f_2}}{2} - r_{\text{Eff, M}}} = 4.20 \cdot 10^6 \text{ mm}^3
\]

\[
W_{\text{eff, y,2}} = \frac{1.540 \cdot 10^9}{200 - 3 - 213.6} = 7.558 \cdot 10^6 \text{ mm}^3
\]

Web (bending):

\[
\psi = \frac{\sigma_2}{\sigma_1} = \frac{M_{y, Ed}/W_{\text{eff, y,2}}}{M_{y, Ed}/W_{\text{eff, y,1}}} = \frac{W_{\text{eff, y,1}}}{W_{\text{eff, z,2}}} = \frac{4.20 \cdot 10^6}{7.558 \cdot 10^6}
\]

\[\psi = -0.56 > -1 \]

\[
\frac{h_w}{t_w} = \frac{570}{10} = 57.0 > \frac{42 \cdot \varepsilon}{0.67 + 0.33 \cdot \psi} = \frac{42 \cdot 0.924}{0.67 - 0.33 \cdot 0.56}
\]

\[\frac{h_w}{t_w} = 57.0 > 79.8 \text{ (Class 3)} \]

The web is at least of Class 3.

In case of a slender web, the effective width should be determined on the basis of stress ration \(\psi \).

The effective section modulus \(W_{\text{eff, y}} \) for the design resistance to uniform bending is defined as the smallest value of the effective section moduli at the centroid of the upper and lower flange, \(W_{\text{eff, y,1}} \) and \(W_{\text{eff, y,2}} \), respectively:

\[
W_{\text{eff, y,1}} = \frac{t_{\text{eff, y}}}{h_w + \frac{t_{f_1} + t_{f_2}}{2} - r_{\text{Eff, M}}} = \frac{1.540 \cdot 10^9}{570 - \frac{10 + 20}{2} - 213.6}
\]

\[W_{\text{eff, y,1}} = 4.144 \cdot 10^6 \text{ mm}^3 \]
Steel column with a class 4 cross-section

\[W_{\text{eff},y,2} = \frac{I_{\text{eff},y}}{z_{\text{Teff}}} = \frac{1.540 \cdot 10^9}{213.6} = 7.205 \cdot 10^6 \, \text{mm}^3 \]

Here, \(W_{\text{eff},y,1} \) governs.

STEP 4: Cross section resistance check

Additional bending moment \(N_{\text{Ed}} e_{N,y} \) causes compression at the upper flange (+compression).

\[
\frac{N_{\text{Ed}}}{A_{\text{eff}} f_{\text{y}}/\gamma_M} + \frac{N_{\text{Ed}} e_{N,y}}{W_{\text{eff},y,1} f_{\text{y}}/\gamma_M} = \frac{5.5 \cdot 10^6}{24778.1 \cdot 275/1.0} + \frac{5.5 \cdot 10^6 \cdot 30.1}{4.144 \cdot 10^6 \cdot 275/1.0}
= 0.807 + 0.145
= 0.95 < 1.0 \text{ Satisfactory} \]

2. STABILITY CHECK

In this example Method 2 is applied. Since the member has a rectangular hollow cross-section, the member is not susceptible to torsional deformation, so flexural buckling constitutes the relevant instability mode and \(\chi_{LT} = 1.00 \)

STEP 1: Characteristic resistance of the section

\[N_{\text{Rk}} = A f_{\text{y}} = 24778.1 \cdot 275 = 6813977.5 \, N = 6813.97 \, kN \]

\[M_{y,Rk} = W_{pl,y} f_{\text{y}} = 4.144 \cdot 10^6 \cdot 275 = 1139.6 \cdot 10^{-6} \, Nm \]

\[M_{y,Rk} = 1139.6 \, kNm \]

STEP 2: Reduction coefficients due to flexural buckling, \(\chi_y \) and \(\chi_z \)

Plane xz (buckling about y)

\[L_{cr,y} = \beta \cdot L = 4.00 \, m \]

\[
\bar{\lambda}_y = \frac{L_{cr,y}}{i_y} \cdot \sqrt{\frac{A_{\text{eff}}}{\lambda_1}}
\]

\[i_y = \sqrt{\frac{f_{\text{y}}}{A}} = \sqrt{\frac{235}{294.00}} = 24.38 \, \text{cm} \]

\[\lambda_1 = 93.9 \cdot \varepsilon \]

\[\varepsilon = \sqrt{\frac{235}{f_{\text{y}}}} = \sqrt{\frac{235}{275}} = 0.9244 \]

\[
\bar{\lambda}_y = \frac{400}{24.38} \cdot \sqrt{\frac{247.78}{294.00}} = 0.173
\]
Steel column with a class 4 cross-section

\(\alpha = 0.34 \) Curve b

\(\phi = 0.5 \left[1 + \alpha \cdot (\lambda_y - 0.2) + \lambda_y^2 \right] \)

\(\phi = 0.5 \left[1 + 0.34 \cdot (0.173 - 0.2) + 0.173^2 \right] \)

\(\phi = 0.51 \)

\(\chi_y = \frac{1}{\phi + \sqrt{\phi^2 - \lambda_y^2}} \leq 1.0 \)

\(\chi_y = \frac{1}{0.51 + \sqrt{0.51^2 - 0.173^2}} \)

\(\chi_y = 1.01 \leq 1.0 \rightarrow \chi_y = 1.0 \)

Plane xy (buckling about z):

\(L_{cr,z} = \beta \cdot L = 4.00 \text{ m} \)

\(\overline{x}_z = \frac{L_{cr,z}}{i_z} \cdot \sqrt{\frac{A_{eff}}{A}} \)

\(i_z = \sqrt{\frac{T_z}{A}} = \sqrt{\frac{153200.00}{294.00}} = 22.82 \text{ cm} \)

\(\overline{x}_z = \frac{400}{22.82} \cdot \sqrt{\frac{247.78}{294.00}} \)

\(\overline{x}_z = 0.185 \)

\(\alpha = 0.34 \) Curve b

\(\phi = 0.5 \left[1 + \alpha \cdot (\lambda_z - 0.2) + \lambda_z^2 \right] \)

\(\phi = 0.5 \left[1 + 0.34 \cdot (0.185 - 0.2) + 0.185^2 \right] \)

\(\phi = 0.51 \)

\(\chi_z = \frac{1}{\phi + \sqrt{\phi^2 - \lambda_z^2}} \leq 1.0 \)

\(\chi_z = \frac{1}{0.51 + \sqrt{0.51^2 - 0.173^2}} \)

\(\chi_z = 1.01 \leq 1.0 \rightarrow \chi_z = 1.0 \)

STEP 3: Calculating of the interaction factors \(k_{yy} \) and \(k_{zy} \)

\(\psi_y = M_{y,Ed,base}/M_{Ed,top} = 175.5/175.5 = 1.0 \)

Table B.3 of EN 1993-1-1 gives:

\(C_{my} = 0.6 + 0.4 \cdot \psi_y \geq 0.4 \)

Interaction factors \(k_{ij} \) for members not susceptible to torsional deformations, Annex B, Table B.1
Steel column with a class 4 cross-section

\[C_{my} = 0.6 + 0.4 \cdot 1.0 = 1.0 \]

\[k_{yy} = C_{my} \left(1 + 0.6 \cdot \chi_y \cdot \frac{N_{Ed}}{X_y \cdot N_{Rk}} \right) \leq C_{my} \left(1 + 0.6 \cdot \frac{N_{Ed}}{X_y \cdot N_{Rk}} \right) \]

\[k_{yy} = 1.0 \cdot \left(1 + 0.6 \cdot 0.173 \cdot \frac{5500}{1.0 \cdot 6813.97} \right) \leq 1.0 \cdot \left(1 + 0.6 \cdot \frac{5500}{0.173 \cdot 6813.97} \right) \]

\[k_{yy} = 1.0837 \leq 1.484 \]

\[k_{zy} = 0.8 \cdot k_{yy} = 1.084 \cdot 0.8 = 0.867 \]

Final expression

Check for y-y

\[\frac{N_{Ed}}{N_{Rk}} + k_{yy} \cdot \frac{M_{y,Ed}}{\chi_L \cdot M_{y,Rk}} \leq 1.0 \]

\[\frac{5500}{1.0 \cdot 6813.9} + 1.084 \cdot \frac{175}{1.0 \cdot 1139.6} \leq 1.0 \]

0.807 + 0.166 = 0.973 \leq 1.0 \rightarrow Satisfied

Check for z-z

\[\frac{N_{Ed}}{N_{Rk}} + k_{zy} \cdot \frac{M_{z,Ed}}{\chi_L \cdot M_{z,Rk}} \leq 1.0 \]

\[\frac{5500}{1.0 \cdot 6813.9} + 0.867 \cdot \frac{175}{1.0 \cdot 1139.6} \leq 1.0 \]

0.807 + 0.133 = 0.94 \leq 1.0 \rightarrow Satisfied
5 Conclusion

In the reference example, the effective area A_{eff} is determined assuming that the cross-section is subjected only to stresses due to uniform axial compression (EN 1993-1-5, 4.3(3)) $A_{c,eff} = \rho \cdot A_c$. The effective section modulus W_{eff} is determined assuming the cross-section is subject to only bending stresses (EN 1993-1-5, 4.3(3)).

By using the NEFF SIG SMIIN input it is possible to define only one effective cross-section for the design and stability check, therefore the effective section modulus is determined assuming that the cross-section is subject only to stresses due uniform axial compression. The A_{eff} as well as $W_{eff,y}$ and $W_{eff,z}$ values are calculated in SOFISTIK for the effective cross-section as shown in Fig. 3. This approach checks the MOST UNFAVOURABLE case where all plates are under compression.

By using the iterative method (EN 1993-1-5, Annex E) for calculating the effective cross-section properties, the effective CS properties will be calculated for the current stress state, so it gives more realistic and economical results as shown in table 2. The iterative method can be used ONLY for the THIN-WALLED cross-sections. In Fig. 5 you will find the comparison between “SIG NEFF”, “Iterative approach” and the reference.

![Figure 5: Comparison of the $b_{l,eff}$ values](image)

6 Literature

