Benchmark Example No. 31

Punching of flat slab acc. DIN EN 1992-1-1

SOFiSTiK | 2018
This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.

Front Cover
1 Problem Description

The problem consists of a flat slab of a multi-story building as shown in Fig. 1. The design of the slab against punching at the columns is discussed in the following.

For the concrete, strength class C35/45 ($f_{ck} = 35$ MPa, $\gamma_c = 1.5$) is assumed, for the reinforcing steel, grade B500B ($f_{yk} = 500$ MPa, $E_s = 205$ GPa, $\gamma_s = 1.15$, ductility class B). The factored design load accounting for self-weight, dead load and imposed load is $e_d = 14.67$ kN/m2.

![Figure 1: Model](image)

2 Reference Solution

This example is concerned with the punching of flat slabs. The content of this problem is covered by the following parts of DIN EN 1992-1-1:2004 + AC:2010 [1]:

Overview

<table>
<thead>
<tr>
<th>Design Code Family(s):</th>
<th>DIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Code(s):</td>
<td>DIN EN 1992-1-1</td>
</tr>
<tr>
<td>Module(s):</td>
<td>BEMESS</td>
</tr>
<tr>
<td>Input file(s):</td>
<td>punching_din_en_1992.dat</td>
</tr>
</tbody>
</table>
• Construction materials (Section 3)
• Punching (Section 6.4)

Figure 2: Punching

3 Model and Results

The goal of the preliminary design is to check if the dimensions of the structure are reasonable with respect to the punching shear strength and if punching shear reinforcement is required.

In the reference example the reaction forces are estimated by using contributive areas, therefore the example has been splitted into three models to show the punching for

• the inner column B2,
• the edge column A2/B1,
• wall at position B2.

The SOFiSTiK and reference results are given in Table 3.

Table 1: Results

<table>
<thead>
<tr>
<th>Result</th>
<th>SOF.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner column B2 (Node 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{Ed} \ [kN]$</td>
<td>808.0</td>
<td>809.0</td>
</tr>
<tr>
<td>$V_{Ed, red} \ [kN]$</td>
<td>803.0</td>
<td></td>
</tr>
<tr>
<td>$\nu_{Ed} \ [N/mm^2]$</td>
<td>1.11</td>
<td>1.12</td>
</tr>
<tr>
<td>$\nu_{Rd,c} \ [N/mm^2]$</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>$\nu_{Rd, max} \ [N/mm^2]$</td>
<td>1.30</td>
<td>1.30</td>
</tr>
<tr>
<td>$u_{out} \ [m]$</td>
<td>6.01</td>
<td>6.05</td>
</tr>
</tbody>
</table>
Table 1: (continued)

<table>
<thead>
<tr>
<th>Result</th>
<th>SOF.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1 [m]</td>
<td>4.188</td>
<td>4.19</td>
</tr>
<tr>
<td>β</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td>d [m]</td>
<td>0.19</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Edge column B1/A2 (Node 2)

V_{Ed} [kN]	317.5	319
$V_{Ed,red}$ [kN]	312.5	—
ν_{Ed} [N/mm²]	0.91	0.925
$\nu_{Rd,c}$ [N/mm²]	0.86	0.86
$\nu_{Rd,max}$ [N/mm²]	1.21	1.204
u_{out} [m]	3.21	3.28
u_1 [m]	2.539	2.54
β	1.40	1.40
d [m]	0.19	0.19

Wall B2 (Node 1014)

V_{Ed} [kN]	360.8	381.0
$V_{Ed,red}$ [kN]	—	—
ν_{Ed} [N/mm²]	1.14	1.20
$\nu_{Rd,c}$ [N/mm²]	0.88	0.878
$\nu_{Rd,max}$ [N/mm²]	1.23	1.229
u_{out} [m]	3.50	3.69
u_1 [m]	2.244	2.24
β	1.35	1.35
d [m]	0.19	0.19
4 Design Process

The calculation steps of the reference solution are presented below.

4.1 Material

Concrete 35/45

\[f_{ck} = 35 \text{ N/mm}^2 \]

\[f_{cd} = \frac{f_{ck}}{\gamma_c} \]

\[f_{cd} = 0.85 \cdot \frac{35}{1.5} = 19.80 \text{ N/mm}^2 \]

Steel B500B (flexural and transverse reinforcement)

\[f_{yk} = 500 \text{ MPa} \]

\[f_{yd} = \frac{f_{yk}}{\gamma_s} = 435.00 \text{ N/mm}^2 \]

\[E_s = 205000 \text{ MPa} \]

Ductility class: B

4.2 Actions and Loads

<table>
<thead>
<tr>
<th>Action</th>
<th>Characteristic value kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead-weight ((g_k))</td>
<td>7.25</td>
</tr>
<tr>
<td>Variable load ((q_k))</td>
<td>3.25</td>
</tr>
</tbody>
</table>

\[g_d = \gamma_G \cdot g_k = 1.35 \cdot 7.25 = 9.79 \text{ kN/m}^2 \]

\[q_d = \gamma_Q \cdot q_{k,1} = 1.50 \cdot 3.25 = 4.88 \text{ kN/m}^2 \]

\[e_d = g_d + q_d = 9.79 + 4.88 = 14.67 \text{ kN/m}^2 \]

4.3 Punching check for inner Column

Calculating effective depth \(d\) in \(x\) direction:

\[d_x = h - c_{v,1} - 0.5 \cdot \phi \]

\[= 240 - 30 - 10 \]

\[= 200 \text{ mm} \]

\footnote{The sections mentioned in the margins refer to DIN EN 1992-1-1 [1] unless otherwise specified.}
Calculating effective depth d in y direction:

$$d_y = d_x - \phi$$

$$= 200 - 20$$

$$= 180 \text{ mm}$$

The columns will be checked for punching check:

- $\nu_{Rd,c}$ without punching reinforcement
- $\nu_{Rd,s}$ with punching reinforcement
- $\nu_{Rd,max}$ check the maximum value of shear

The position of columns is shown in Fig 3.

![Figure 3: Load distribution - columns](image)

Table 3: Load distribution per column

<table>
<thead>
<tr>
<th>Column Type</th>
<th>Axis</th>
<th>Area $[m^2]$</th>
<th>$V_{Ed} [kN]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner column</td>
<td>C/3</td>
<td>45.56</td>
<td>700.60</td>
</tr>
<tr>
<td>Inner column</td>
<td>B/3, C/2</td>
<td>50.12</td>
<td>745.80</td>
</tr>
<tr>
<td>Corner column</td>
<td>B/2</td>
<td>55.13</td>
<td>749.20</td>
</tr>
<tr>
<td>Edge column</td>
<td>A/3, C/1</td>
<td>19.74</td>
<td>298.60</td>
</tr>
<tr>
<td>Edge column</td>
<td>A/2, B/1</td>
<td>21.72</td>
<td>305.60</td>
</tr>
</tbody>
</table>
Table 3: (continued)

<table>
<thead>
<tr>
<th>Column Type</th>
<th>Axis</th>
<th>Area [m²]</th>
<th>V_{Ed} [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corner column A/1</td>
<td>A/1</td>
<td>8.56</td>
<td>139.90</td>
</tr>
</tbody>
</table>

Effective depth d

$$d = \frac{d_x + d_y}{2}$$

$$d = \frac{0.2 + 0.18}{2} = 0.19 \text{ m}$$

Perimeter u_0 and u_1

$$u_0 = 4 \cdot 0.45 = 1.80 \text{ m}$$

$$u_1 = 2 \cdot (2 \cdot 0.45 + \pi \cdot 2.0 \cdot 0.19) = 4.19 \text{ m}$$

Max. shear force (column B/2):

$$V_{Ed} = \frac{\beta \cdot V_{Ed}}{u_1 \cdot d}$$

$V_{Ed} = 809 \text{ kN}$

BEMESS is reducing the V_{Ed} value by dead load of the slab.
Punching of flat slab acc. DIN EN 1992-1-1

$V_{Ed,\text{red}} = V_{Ed} - V_{\text{red}}$

$V_{\text{red}} = 1.35 \cdot \gamma_c \cdot r^2_{\text{col,eff}} \cdot \pi \cdot h_{\text{slab}}$

Where:

- $r_{\text{col,eff}}$ is the effective radius of the column
- γ_c is the nominal weight of the concrete in kN/m3
- $r^2_{\text{col,eff}} \cdot \pi$ is the effective area
- h_{slab} is the height of the slab

$A_{\text{col}} = a \cdot b$ or $A_{\text{col}} = a^2$ (if $a=b$)

$r_{\text{col,eff}} = \sqrt{\frac{A_{\text{col}}}{\pi}}$

$\beta = 1.10$

In BEMESS the β value is limited to $\beta_{\text{max}} = 1.8$.

Min. value is taken as $\beta_{\text{min}} = 1.1$

$1.1 \leq \beta \leq 1.8$

$\beta = 1 + k \cdot \frac{M_{Ed}}{V_{Ed} \cdot W_1}$

The W_i value is calculated acc. $W_i = \int_{0}^{u_i} |e| dl$

$\gamma_c = 1 + (200/d)^{1/2} \leq 2.0$

$k = 1 + (200/190)^{1/2} = 2.0$

$\nu_{\text{min}} = (0.0525/\gamma_c) \cdot k^{3/2} \cdot f_{ck}^{1/2}$

$\nu_{\text{min}} = (0.05252/1.5) \cdot 2.0^{3/2} \cdot 35^{1/2} = 0.586 \text{ MN/m}^2$

Reinforcement ratio for longitudinal reinforcement

over column B/2 - width of the strip

$b = 0.4 \cdot 6.75 \text{ m} = 2.70 \text{ m} > b_p = 0.45 + 2 \cdot 3.0 \cdot 0.19 = 1.59 \text{ m}$

\[\text{Reinforcement ratio}\]
Punching of flat slab acc. DIN EN 1992-1-1

\[\rho_{l,x} = \frac{31.42}{100 \cdot 20} = 0.0157 \]
\[\rho_{l,y} = \frac{31.42}{100 \cdot 18} = 0.0175 \]
\[\rho_l = (\rho_{l,x} \cdot \rho_{l,y})^{1/2} \]
\[= (0.0157 \cdot 0.0175)^{1/2} \]
\[= 0.0166 \]
\[\leq 0.02 \]
\[\leq 0.50 \cdot \frac{f_{cd}}{f_{yd}} = 0.5 \cdot \frac{19.8}{435} = 0.023 \]

\[v_{Rd,c} = \frac{0.18}{1.5} \cdot 2.0 \cdot (100 \cdot 0.0166 \cdot 35)^{1/3} \]
\[v_{Rd,c} = 0.928 \text{ MN/m}^2 > v_{\text{min}} \]
\[< v_{Ed} = 1.118 \text{ MN/m}^2 \]
\[\Rightarrow \text{Punching reinforcement is required!} \]

Slab with punching reinforcement

\[v_{Rd,\max} = 1.4 \cdot v_{Rd,c} \]
\[= 1.4 \cdot 0.928 = 1.299 \text{ MN/m}^2 \]
\[> v_{Ed} = 1.118 \text{ MN/m}^2 \]
\[\Rightarrow v_{Ed} \text{ the punching reinforcement can be used} \]

Punching reinforcement \(\alpha = 90^\circ \)

\[u_{out} = \beta \cdot \frac{V_{Ed}}{v_{Rd,c} \cdot d} \]
\[u_{out} = 1.10 \cdot \frac{0.809}{0.15} \cdot \frac{0.19}{0.18} \]
\[u_{out} = 6.05 \text{ m} \]

Loaded area perimeter \(A_{\text{load}} \)

\[a_{out} = \frac{u_{out} - u_0}{2 \cdot \pi} \]
\[= \frac{6.05 - 1.80}{2 \cdot \pi} \]
\[= 0.67 \text{ m} \Rightarrow \approx 3.52 \cdot d \]

The punching reinforcement is required until \((3.52 - 1.5) \cdot d = 2.02 \cdot d \)

\[v_{Rd,cs} = 0.75 \cdot v_{rd,c} + 1.5 \cdot (d/s_r) \cdot \frac{A_{SW} \cdot f_{yw,ed} \cdot \sin \alpha}{u_1 \cdot d} \]
with:
\[f_{yw,ef} = 250 + 0.25 \cdot d \leq f_{yw} \]
\[f_{yw,ef} = 250 + 0.25 \cdot 190 = 297 \text{ MN/m}^2 < 435 \text{ MN/m}^2 \]
\[s_r = 0.75 \cdot d \]
\[A_{sw} = \frac{(v_{Ed} - 0.75 \cdot v_{Rd,c}) \cdot u_1 \cdot d}{1.5 \cdot \frac{d}{s_r} \cdot f_{yw,ef}} \]
\[A_{sw} = \frac{(1.118 - 0.75 \cdot 0.928) \cdot 4.19 \cdot 0.19}{1.5 \cdot 0.75 \cdot 297} \cdot 10^4 \]
\[A_{sw} = 5.66 \text{ cm}^2 \]
Reinforcement in perimeter 1 - \(A_{sw,1} \)
\[reqA_{sw,1} = k_{sw} \cdot A_{sw} \]
\[reqA_{sw,1} = 2.5 \cdot 5.66 = 14.10 \text{ cm}^2 \]
Reinforcement in perimeter 2 - \(A_{sw,2} \)
\[reqA_{sw,2} = k_{sw} \cdot A_{sw} \]
\[reqA_{sw,2} = 1.4 \cdot 5.66 = 7.92 \text{ cm}^2 \]

Detailing of reinforcement

The spacing of link legs around a perimeter should not exceed 1.5 \(d \) within the first control perimeter (2 \(d \) from loaded area), and should not exceed 2 \(d \) for perimeters outside the first control perimeter where that part of the perimeter is assumed to contribute to the shear capacity.

\[u_{s1} = 2.40 \text{ m} \Rightarrow \min n = \frac{2.40}{1.5 \cdot 0.19} = 9 \]
\[u_{s2} = 3.29 \text{ m} \Rightarrow \min n = \frac{3.29}{1.5 \cdot 0.19} = 12 \]

Min. punching reinforcement:
\[A_{sw,\text{min}} = \frac{0.08}{1.5} \cdot \frac{\sqrt{f_{ck}}}{f_{yk}} \cdot s_r \cdot S_t \]
(NCI), 9.4.3: Eq. (9.11DE)
\[A_{sw,\text{min}} = 0.05333 \cdot \frac{\sqrt{35}}{500} \cdot 0.75 \cdot 1.5 \cdot 1.9^2 \]
\[A_{sw,\text{min}} = 0.26 \text{ cm}^2 \]

4.4 Punching check for edge column

The punching check for columns (A2/B1) is verified:

Slab: C35/45, \(d = 0.19 \text{ m} \)
Critical perimeter

\[u_1 = 3 \cdot 0.45 + \pi \cdot 2.0 \cdot 0.19 \]

\[u_1 = 2.54 \, m \]

For edge and corner columns the effective perimeter is reduced based by using the *Sector Method* (See Fig. 6). The *Sector Method* delivers the effective perimeter \(u \) of the punching round cut. The ratio \(u/u_0 \) is output in % in the result list.

Maximal shear force:
\[V_{Ed} = 319 \text{ kN} \]
\[V_{Ed} = \frac{\beta \cdot V_{Ed}}{u_1 \cdot d} \]
\[\beta = 1.4 \]
\[V_{Ed} = \frac{1.40 \cdot 0.319}{2.54 \cdot 0.19} \]
\[V_{Ed} = 0.925 \text{ MN/m}^2 \]

Shear resistance without punching reinforcement

\[V_{Rd,c} = \frac{0.18}{\gamma_c} \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{1/3} \geq V_{min} \]

with

\[k = 2.0 \]
\[V_{min} = 0.586 \text{ MN/m}^2 \]

\[\rho_l = (0.01 \cdot 0.0175)^{1/2} = 0.0132 \]
\[\leq 0.02 \]
\[\leq 0.50 \cdot \frac{f_{cd}}{f_{yd}} = 0.023 \]

\[V_{Rd,c} = \frac{0.18}{1.5} \cdot 2.0 \cdot (100 \cdot 0.0132 \cdot 35)^{1/3} \]
\[V_{Rd,c} = 0.860 \text{ MN/m}^2 > V_{min} \]
\[< 0.925 \text{ MN/m}^2 \]

⇒ punching reinforcement is required!

Slab with punching reinforcement

\[\text{Maximum shear force} \]

\[V_{Rd,max} = 1.4 \cdot V_{Rd,c} = 1.4 \cdot 0.860 \]
\[= 1.204 \text{ MN/m}^2 > V_{Ed} = 0.925 \text{ MN/m}^2 \]

⇒ the punching reinforcement can bear the shear force \(V_{Ed} \)!
Punching check for wall

The punching check is verified at position B2.
Figure 7: Load distribution - wall

\[d = 190 \text{ mm} \]

\[b_1 = b = 350 \text{ mm} < 3 \cdot d \]

\[\frac{a_1}{2} = b = 350 \text{ mm} \]

\[< 3 \cdot d - 0.5 \cdot b_1 = 3 \cdot 190 - 175 = 395 \text{ mm} \]

\[e_d = 14.67 \text{ kN/m}^2 \]

Load distribution:
\[A_{LE} = (0.5 + 0.6) \cdot 6.75 \, m \cdot (0.5 \cdot 6.75 \, m + 0.125 \, m) = 26.0 \, m^2 \]

\[V_{Ed} = A_{LE} \cdot e_d \]

\[V_{Ed} = 26.0 \cdot 14.67 = 381 \, kN \]

For walls there are two methods to analyse the punching force at wall ends and corners. Default is the integration of the slab shear force along the critical perimeter. As the result varies depending on the distance to the wall, BEMESS analyses four distances and takes the maximum punching force.

Critical perimeter:

\[u_1 = 3 \cdot 0.35 + \phi \cdot 2.0 \cdot 0.19 = 2.24 \, m \]

Max. shear force:

\[\nu_{Ed} = \frac{\beta \cdot V_{Ed}}{u_i \cdot d} \]

\[\beta = 1.35 \]

\[\nu_{Ed} = \frac{1.35 \cdot 0.381}{2.24 \cdot 0.19} = 1.208 \, MN/m^2 \]

Shear resistance without punching reinforcement

\[\nu_{Rd,c} = \frac{0.18}{\gamma_c} \cdot k \cdot (100 \cdot \rho_i \cdot f_{ck})^{1/3} \geq \nu_{min} \]

with:

\[k = 2.0 \]

\[\nu_{min} = 0.586 \, MN/m^2 \]

- Reinforcement ration \(\rho_i \):

(Parallel over the edge of wall B/2)

For this example we will take \(\rho_i = 1.4 \% \)

\[\rho_i = 0.014 \]

\[\leq 0.02 \]

\[\leq 0.50 \cdot \frac{f_{cd}}{f_{yd}} = 0.023 \]

\[\nu_{Rd,c} = \frac{0.18}{1.5} \cdot 2.0 \cdot (100 \cdot 0.0140 \cdot 35)^{1/3} \]

\[\nu_{Rd,c} = 0.878 \, MN/m^2 > \nu_{min} \]

\[< 1.208 \, MN/m^2 \]

\[\Rightarrow \] punching reinforcement is required!

Slab with punching reinforcement
Maximum shear force

\[V_{Rd,\text{max}} = 1.4 \cdot V_{Rd,c} = 1.4 \cdot 0.878 \]
\[= 1.229 \text{ MN/m}^2 < V_{Ed} = 1.208 \text{ MN/m}^2 \]

\[\Rightarrow V_{Ed} < V_{Rd,\text{max}} \]

Punching reinforcement \(\alpha = 90^\circ \)

\[u_{out} = \beta \cdot \frac{V_{Ed}}{V_{Rd,c} \cdot d} \]

\[u_{out} = 1.35 \cdot \frac{0.381}{0.878 \cdot 0.15 \cdot 0.19} \]

\[u_{out} = 3.69 \text{ m} \]

Loaded area perimeter \(A_{load} \)

\[a_{out} = \frac{u_{out} - u_0}{\pi} \]
\[= \frac{3.69 - 3 \cdot 0.35}{\pi} = 0.84 \text{ m} \rightarrow 4.42 \cdot d \]

Punching reinforcement is required until \((4.42 - 1.5) \cdot d = 2.92 \cdot d\)

\[V_{Rd,s} = 0.75 + V_{Rd,c} + 1.5 \cdot \frac{d}{s_r} \cdot \frac{A_{sw} \cdot f_{ywd,ef} \cdot \sin \alpha}{u_1 \cdot d} \]

with

\[f_{ywd,ef} = 297 \text{ MN/m}^2 \]
\[s_r = 0.5 \cdot d \]

\[A_{sw} = (V_{Ed} - 0.75 \cdot V_{Rd,c}) \cdot \frac{u_1 \cdot d}{1.5 \cdot \frac{d}{s_r} \cdot f_{ywd,ef}} \]

\[A_{sw} = (1.208 - 0.75 \cdot 0.878) \cdot \frac{2.24 \cdot 0.19 \cdot 10^4}{1.5 \cdot 0.5 \cdot 297} \]

\[A_{sw} = 2.62 \text{ cm}^2 \]

Reinforcement in perimeter 1 - \(A_{sw,1} \)

\[reqA_{sw,1} = k_{sw} \cdot A_{sw} \]

\[reqA_{sw,1} = 2.5 \cdot 2.62 = 6.55 \text{ cm}^2 \]

Reinforcement in perimeter 2 - \(A_{sw,2} \)

\[reqA_{sw,2} = k_{sw} \cdot A_{sw} \]

\[reqA_{sw,2} = 1.4 \cdot 2.62 = 3.66 \text{ cm}^2 \]
\[A_{sw,min} = 0.26 \, cm^2 \]
5 Conclusion

The program searches for the single support nodes (single columns, wall ends as well as wall corners), and performs a punching check for these points. Nodes with less than 5 kN support reaction are not considered! Because the focus of the verification example is punching, the value ρ_i is overtaken from the verification example.

It has been shown that the results are reproduced with excellent accuracy.

6 Literature
