Benchmark Example No. 45

One-Dimensional Soil Consolidation

SOFiSTiK | 2020
VERIFICATION
BE45 One-Dimensional Soil Consolidation

VERIFICATION Manual, Service Pack 2020-4 Build 54

Copyright © 2020 by SOFiSTiK AG, Oberschleissheim, Germany.

SOFISTiK AG

HQ Oberschleissheim
Bruckmannring 38
85764 Oberschleissheim
Germany

Office Nuremberg
Flataustraße 14
90411 Nuremberg
Germany

T +49 (0)89 315878-0
F +49 (0)89 315878-23

T +49 (0)911 39901-0
F +49(0)911 397904

info@sofistik.com
www.sofistik.com

This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.

Front Cover
Project: Queensferry Crossing | Photo: Bastian Kratzke
1 Problem Description

In the following example a one-dimensional consolidation problem has been analyzed. The soil layer is subjected to an uniform loading of the intensity p_0 acting on the surface. Base of the soil is rigidly fixed while the sides are laterally constrained. Only the soil surface is allowed to drain. Geometry, load and boundary conditions are depicted in Fig. 1. The soil material is elastic, isotropic and saturated with water. The surface settlements and pore excess pressures for the two extreme cases (time zero and time infinity) of the consolidation process are compared to the analytical solution.

![Figure 1: Problem Definition](image)

2 Reference Solution

The analytical solution to the problem was given by Terzaghi in 1925 [1]. The solution assumes that the soil is saturated with water, the soil and water are non-deformable, the volume change takes place only on the account of the water drainage and the Darcy’s filtration law applies. Then the differential equation of the one-dimensional process of consolidation for the excess water pressure p_{we} can be written as [2]:

$$\frac{\partial p_{we}}{\partial t} = c_v \frac{\partial^2 p_{we}}{\partial z^2},$$

(1)

where:

- $c_v = k \cdot \frac{E_s}{\gamma_w}$ coefficient of consolidation,
- E_s stiffness modulus,
- k coefficient of permeability,
\(\gamma_w\) unit weight of water,

\(h\) soil thickness,

\(z = h - y\) elevation.

Taking into account the initial and boundary conditions for the problem illustrated by Fig. 1

\[t = 0 \quad \text{and} \quad 0 \leq z < h \quad \Rightarrow \quad p_{we} = p_0, \quad (2a) \]

\[0 \leq t < \infty \quad \text{and} \quad z = 0 \quad \Rightarrow \quad \frac{\partial p_{we}}{\partial z} = 0, \quad (2b) \]

\[0 \leq t < \infty \quad \text{and} \quad z = h \quad \Rightarrow \quad p_{we} = 0, \quad (2c) \]

\[t = \infty \quad \text{and} \quad 0 \leq z \leq h \quad \Rightarrow \quad p_{we} = 0, \quad (2d) \]

the Eq. 1 can be analytically solved for \(p_{we}\) as a function of the time \(t\) and the elevation \(z = h - y\)

\[
\frac{p_{we}(t,z)}{p_0} = \frac{4}{\pi} \sum_{j=0}^{\infty} \frac{1}{(2j+1)^2} \cdot \sin\left(\frac{(2j+1)\pi z}{2h}\right) \cdot e^{-(2j+1)^2\pi^2/4T_v} \quad (3)
\]

where:

\(p_0\) surface pressure,

\(T_v = c_v/h^2 \cdot t\) time factor.

With the known change of excess pore pressure with respect to time, the settlement due to consolidation \(s(t)\) at time \(t\) can be determined

\[
s(t) = \frac{p_0 h}{E_s} \cdot \left[1 - \frac{8}{\pi^2} \cdot \sum_{j=0}^{\infty} \frac{1}{(2j+1)^2} \cdot e^{-(2j+1)^2\pi^2/4T_v} \right]. \quad (4)
\]

For the time infinity, the excess pore pressures will completely dissipate (see Eq. 2d) and the final settlements due to consolidation \(s_\infty\) will be

\[
s_\infty = s(t = \infty) = \frac{p_0 h}{E_s}. \quad (5)
\]

3 Model and Results

Elastic, isotropic soil under undrained and drained conditions has been analyzed. Material, geometry and loading properties are summarized in Table 1. The undrained soil condition is considered with the help of the method based on the undrained effective stress (\(\sigma'\)) analysis using effective material parameters. \(G\) and \(\nu'\) are effective soil parameters, while \(B\) represents the Skempton’s B-parameter. Self-weight is not taken into consideration.

<table>
<thead>
<tr>
<th>Material</th>
<th>Geometry</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G, \nu' = 0.0)</td>
<td>(h)</td>
<td>(p_0)</td>
</tr>
<tr>
<td>(B = 0.998)</td>
<td>(w = h)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1: (continued)

<table>
<thead>
<tr>
<th>Material Geometry</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho = 0.0 \text{ kg/m}^3$</td>
<td></td>
</tr>
</tbody>
</table>

Finite element mesh of the model is shown in Fig. 2. Mesh is regular and consist of quadrilateral finite elements.

![Figure 2: Finite Element Model](image)

The results are summarized in the Table 2. Final settlement of the surface of the soil due to consolidation s_∞ is compared to the analytical solution given by Eq. 5. The excess water pressures p_{we} for the time zero ($T_v = 0$, undrained) and time infinity ($T_v = \infty$, drained) are compared to the analytical solutions from Eqs. 2a and 2d.

Table 2: Results

| T_v | $|e|$ | $T_v = \infty$ | $|e|$ |
|-------|--------|----------------|--------|
| | SOF. | Ref. | SOF. | Ref. |
| $s(T_v) \cdot E_s/(p_0 h)$ | $[-]$ | $-$ | 1.0 | 1.0 | 0.0 |
| $p_{we}(T_v)/p_0$ | $[-]$ | 0.994 | 1.000| 0.006| 0.000| 0.000|

4 Conclusion

The example verifies that the settlements and excess pore pressures for initial ($t = 0$) and final ($t = \infty$) time of the consolidation process obtained by the finite element method are in a good agreement with the analytical solution.
5 Literature
