Benchmark Example No. 2

Design of a Rectangular CS for Bending
Overview

Design Code Family(s): DIN
Design Code(s): DIN EN 1992-1-1
Module(s): AQB
Input file(s): rectangular_bending.dat

1 Problem Description

The problem consists of a rectangular section, as shown in Fig. 1. The cross-section is designed for an ultimate moment M_{Ed} and the required reinforcement is determined.

![Figure 1: Problem Description](image)

2 Reference Solution

This example is concerned with the design of doubly reinforced sections for ULS, subject to pure flexure, such as beams. The content of this problem is covered by the following parts of DIN EN 1992-1-1:2004 [1]:

- Design stress-strain curves for concrete and reinforcement (Section 3.1.7, 3.2.7)
- Basic assumptions for section design (Section 6.1)
- Reinforcement (Section 9.3.1.1, 9.2.1.1)

![Figure 2: Stress and Strain Distributions in the Design of Doubly Reinforced Cross-sections](image)

In doubly reinforced rectangular beams, the conditions in the cross-section at the ultimate limit state, are assumed to be as shown in Fig. 2. The design stress-strain diagram for reinforcing steel considered in this example, consists of an inclined top branch, as presented in Fig. 3 and as defined in DIN EN 1992-1-1:2004 [1] (Section 3.2.7).
3 Model and Results

The rectangular cross-section, with properties as defined in Table 1, is to be designed, with respect to DIN EN 1992-1-1:2004 (German National Annex) [1], [2], to carry an ultimate moment of 135 kNm. The calculation steps with different design methods [3] [4] [5] are presented below and the results are given in Table 2. Here, it has to be mentioned that these standard methods employed in order to calculate the reinforcement are approximate, and therefore deviations often occur.

<table>
<thead>
<tr>
<th>Material Properties</th>
<th>Geometric Properties</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 20/25</td>
<td>h = 40.0 cm</td>
<td>$M_{Ed} = 135 \text{ kNm}$</td>
</tr>
<tr>
<td>B 500A</td>
<td>$d = 35.0 \text{ cm}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$d_2 = 5.0 \text{ cm}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b = 25 \text{ cm}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Results

<table>
<thead>
<tr>
<th></th>
<th>SOF.</th>
<th>General Chart [3]</th>
<th>ω—Table [3]</th>
<th>k_d—Table [3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{s1} \text{[cm}^2/\text{m}]$</td>
<td>10.73</td>
<td>10.73</td>
<td>10.77</td>
<td>10.79</td>
</tr>
<tr>
<td>$A_{s2} \text{[cm}^2/\text{m}]$</td>
<td>2.47</td>
<td>2.47</td>
<td>2.52</td>
<td>2.43</td>
</tr>
</tbody>
</table>
4 Design Process

Design with respect to DIN EN 1992-1-1:2004 (NA) [1] [2]:

Material:

Concrete: $\gamma_c = 1.50$
Steel: $\gamma_s = 1.15$

\[
f_{ck} = 20 \text{ MPa} \\
f_{cd} = a_{cd} \cdot f_{ck} / \gamma_c = 0.85 \cdot 20 / 1.5 = 11.33 \text{ MPa}
\]

\[
f_{yk} = 500 \text{ MPa} \\
f_{yd} = f_{yk} / \gamma_s = 500 / 1.15 = 434.78 \text{ MPa}
\]

Design Load:

\[
N_{Ed} = 0 \\
M_{Eds} = M_{Ed} - N_{Ed} \cdot z_{s1} = 135 \text{ kNm}
\]

Design with respect to General Design Chart Bending with axial force for rectangular cross-sections:

\[
\mu_{Eds} = \frac{M_{Eds}}{b \cdot d^2 \cdot f_{cd}} = \frac{135 \cdot 10^{-3}}{0.25 \cdot 0.35^2 \cdot 11.33} = 0.389
\]

\[
\mu_{Eds} > \mu_{Eds,lim} = 0.296
\]

→ compression reinforcement required

from design chart for $\mu_{Eds,lim} = 0.296$ and $d_2/d = 0.143$:

\[
\varepsilon_1 = 4.30 \cdot 10^{-3}; \quad \varepsilon_2 = -2.35 \cdot 10^{-3}; \quad \zeta = z/d = 0.813
\]

for $\varepsilon_1 = 4.30 \cdot 10^{-3}$ → $\sigma_{s1d} = 436.8 \text{ MPa}$

for $\varepsilon_2 = -2.35 \cdot 10^{-3}$ → $\sigma_{s1d} = -434.9 \text{ MPa}$

\[
M_{Eds,lim} = \mu_{Eds,lim} \cdot b \cdot d^2 \cdot f_{cd} = 102.7 \text{ kNm}
\]

\[
\Delta M_{Eds} = M_{Eds} - M_{Eds,lim} = 135 - 102.7 = 32.3 \text{ kNm}
\]

\[
A_{s1} = \frac{1}{\sigma_{s1d}} \cdot \left(\frac{M_{Eds,lim}}{\zeta \cdot d} + \frac{\Delta M_{Eds}}{d - d_2} + N_{Ed} \right) = 10.73 \text{ cm}^2
\]

\[
A_{s2} = \frac{1}{\sigma_{s2d}} \cdot \frac{\Delta M_{Eds}}{d - d_2} = 2.47 \text{ cm}^2
\]

Design with respect to ω— (or μ_ω—)Table for rectangular cross-sections:

\[
\mu_{Eds} = \frac{M_{Eds}}{b \cdot d^2 \cdot f_{cd}} = \frac{135 \cdot 10^{-3}}{0.25 \cdot 0.35^2 \cdot 11.33} = 0.389
\]

Because the internal force determination is done on the basis of a linear

1The tools used in the design process are based on steel stress-strain diagrams, as
defined in [1] 3.2.7:(2), Fig. 3.8, which can be seen in Fig. 3.
2The sections mentioned in the margins refer to DIN EN 1992-1-1:2004 (German Na-
tional Annex) [1], [2], unless otherwise specified.
Design of a Rectangular CS for Bending

Elastic calculation, then $\varepsilon_{\text{lim}} = 0.45$ is chosen. Referring to the design table with compression reinforcement and for $d_2/d = 0.15$:

$$\omega_1 = 0.4726; \quad \omega_1 = 0.1104$$

$$A_{s1} = rac{1}{f_{yd}} \cdot (\omega_1 \cdot b \cdot d \cdot f_{cd} + N_{Ed}) = 10.77 \, \text{cm}^2$$

$$A_{s2} = rac{f_{cd}}{f_{yd}} \cdot (\omega_2 \cdot b \cdot d) = 2.52 \, \text{cm}^2$$

Design with respect to k_d—Design Table for rectangular cross-sections:

$$k_d = \frac{d}{\sqrt{M_{Eds}/b}} = \frac{35}{\sqrt{135/0.25}} = 1.51$$

Not able to read values from k_d—table for simply reinforced rectangular cross-sections

\rightarrow compression reinforcement is required

Because the internal force determination is done on the basis of a linear elastic calculation, then $\varepsilon_{\text{lim}} = 0.45$ is chosen. Referring to the k_d—table with compression reinforcement:

$$k_{s1} = 2.740; \quad k_{s2} = 0.575$$

(interpolated values for $k_d = 1.51$)

$$\rho_1 = 1.021; \quad \rho_2 = 1.097$$

(interpolated values for $d_2/d = 0.143$ and $k_{s1} = 2.740$)

$$A_{s1} = \rho_1 \cdot k_{s1} \cdot \frac{M_{Eds}}{d} + \frac{N_{Ed}}{a_{s1d}} = 10.79 \, \text{cm}^2$$

$$A_{s2} = \rho_2 \cdot k_{s2} \cdot \frac{M_{Eds}}{d} = 2.43 \, \text{cm}^2$$
5 Conclusion

This example shows the calculation of the required reinforcement for a rectangular beam cross-section under bending. Various different reference solutions are employed in order to compare the SOFiSTiK results to. It has been shown that the results are reproduced with excellent accuracy.

6 Literature

