Benchmark Example No. 7

Design of a T-section for Shear

SOFiSTiK | 2020
This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.
Design of a T-section for Shear

Overview

<table>
<thead>
<tr>
<th>Design Code Family(s):</th>
<th>EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Code(s):</td>
<td>EN 1992-1-1</td>
</tr>
<tr>
<td>Module(s):</td>
<td>AQB</td>
</tr>
<tr>
<td>Input file(s):</td>
<td>t-beam_shear.dat</td>
</tr>
</tbody>
</table>

1 Problem Description

The problem consists of a T-section, as shown in Fig. 1. The cross-section is designed for an ultimate shear force \(V_{Ed} \) and the required reinforcement is determined.

\[
V_{Ed} = A_s \left(\cot \theta - \cot \alpha \right)
\]

Figure 1: Problem Description

2 Reference Solution

This example is concerned with the design of sections for ULS, subject to shear force. The content of this problem is covered by the following parts of EN 1992-1-1:2004 [1]:

- Design stress-strain curves for concrete and reinforcement (Section 3.1.7, 3.2.7)
- Guidelines for shear design (Section 6.2)
- Reinforcement (Section 9.2.2)

The design stress-strain diagram for reinforcing steel considered in this example, consists of an inclined top branch, as presented in Fig. 3 and as defined in EN 1992-1-1:2004 [1] (Section 3.2.7).

Figure 2: Shear Reinforced Members
3 Model and Results

The T-section, with properties as defined in Table 1, is to be designed, with respect to EN 1992-1-1:2004 [1] to carry an ultimate shear force of 450 kN. The reference calculation steps are presented below and the results are given in Table 2.

Table 1: Model Properties

<table>
<thead>
<tr>
<th>Material Properties</th>
<th>Geometric Properties</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 30/37</td>
<td>$h = 60.0 \text{ cm}$</td>
<td>$V_{Ed} = 450 \text{ kN}$</td>
</tr>
<tr>
<td>B 500A</td>
<td>$d = 53.0 \text{ cm}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$d_1 = 7.0 \text{ cm}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b = 30 \text{ cm}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b_{eff} = 180 \text{ cm}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$h_f = 15 \text{ cm}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A_{s1} = 15 \text{ cm}^2$</td>
<td></td>
</tr>
</tbody>
</table>

The intermediate steps of calculating the required reinforcement are also validated in this example. First we calculate the design value for the shear resistance $V_{Rd,c}$ for members not requiring shear reinforcement. It gives a value of $V_{Rd,c} = 62.52 \text{ kN}$.

Checking the results in AQB, we can see that SOFiSTiK outputs also $V_{rd1,c} = 62.52 \text{ kN}$.

Just to test this result, if we input a shear force of $V_{Ed} = 62.51 \text{ kN}$ just below the value for $V_{Rd,c}$, AQB will not output any value for $\cot \theta$ and the minimum reinforcement will be printed (M). If we now give a value of $V_{Ed} = 62.53 \text{ kN}$ just larger than $V_{Rd,c}$, then AQB will start increasing $\cot \theta$ and the minimum reinforcement will be printed. If we continue increasing V_{Ed}, AQB will continue increasing $\cot \theta$ until it reaches the upper limit of $\cot \theta = 2.5$ with using the minimum reinforcement. If now the minimum reinforcement is exceeded, AQB starts calculating a value for the required reinforcement.
Another option to test this limit of $V_{Rd,c} = 62.52 \, kN$, would be to keep $\cot \theta = 1.0$ and now with $V_{Ed} = 62.53 \, kN$, AQB calculates a value for the required reinforcement larger than the minimum reinforcement. For the maximum value of the angle θ, hence $\cot \theta = 1.0$, the maximum value allowed for V_{Ed} can be calculated as $755.57 \, kN$. This can be found in AQB results as the $V_{rd,2,c} = 755.57 \, kN$ for the case of $\cot \theta = 1.0$. Giving as an input a shear force just above this value $V_{Ed} = 755.58$ triggers a warning “Shear design not possible”.

Next step is the validation of $V_{Rd,max}$. When the design shear force V_{Ed} exceeds $V_{Rd,max}$ then $\cot \theta$ must be decreased so that $V_{Ed} = V_{Rd,max}$. The reference result for $V_{Rd,max}$ is $521.08 \, kN$. Inputing a value just below that, should give a $\cot \theta = 2.5$, whereas for a value just above should give $\cot \theta < 2.5$. This can be verified easily in AQB output for $V_{Ed} = 521.07$ and $521.09 \, kN$, respectively.

Also the minimum reinforcement is calculated exactly by AQB with a value of $2.63 \, cm^2/m$.

<table>
<thead>
<tr>
<th></th>
<th>SOF.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{sw,req} / s$ [cm$^2/m$]</td>
<td>8.68</td>
<td>8.679</td>
</tr>
<tr>
<td>$A_{sw,min} / s$ [cm$^2/m$]</td>
<td>2.63</td>
<td>2.629</td>
</tr>
<tr>
<td>$V_{Rd,c}$ [kN]</td>
<td>62.52</td>
<td>62.517</td>
</tr>
<tr>
<td>$V_{Rd,max}$ [kN]</td>
<td>521.08</td>
<td>521.08</td>
</tr>
<tr>
<td>$V_{Ed,max}$ [kN]</td>
<td>755.57</td>
<td>755.5</td>
</tr>
</tbody>
</table>
4 Design Process

Material: Concrete: $\gamma_c = 1.50$

Steel: $\gamma_s = 1.15$

$f_{ck} = 30 \, MPa$

$\alpha_{cc} = 1.0$

$f_{cd} = a_{cc} \cdot f_{ck} / \gamma_c = 1.0 \cdot 30 / 1.5 = 20.0 \, MPa$

$f_{yk} = 500 \, MPa$

$\sigma_{cd} = f_{cd} / \gamma_s = 20.0 \, MPa$

$\rho_1 = A_{sl} / b_w d = 0.00 < 0.02$

$V_{Rd,c} = \left[C_{Rd,c} \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} + k_1 \cdot \sigma_{cp} \right] \cdot b_w \cdot d$

$V_{Rd,c} = 0.00 \, kN \geq V_{Rd,c,min}$

$V_{Rd,c,min} = (\nu_{min} + k_1 \cdot \sigma_{cp}) \cdot b_w \cdot d$

$\nu_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$

$\nu_{min} = 0.035 \cdot 1.6143 \cdot 30^{1/2} = 0.39319$

$V_{Rd,c,min} = (0.39319 + 0.0) \cdot 0.3 \cdot 0.53 = 0.062517 \, MN$

$V_{Rd,c,min} = 62.517 \, kN \rightarrow V_{Rd,c} = 62.517 \, kN$

$V_{Ed} > V_{Rd,c} \rightarrow$ shear reinforcement is required

$1.0 \leq \cot \theta \leq 2.5 \rightarrow$ start with $\cot \theta = 2.50$

$V_{Rd,max} = b_w \cdot z \cdot \nu \cdot f_{cd} / (\cot \theta + \tan \theta)$

$\nu = 0.6 \cdot \left[1 - \frac{f_{ck}}{250} \right] = 0.528$

Min. reinforcement:

1The tools used in the design process are based on steel stress-strain diagrams, as defined in [1] 3.2.7(2), Fig. 3.8, which can be seen in Fig. 3.

2The sections mentioned in the margins refer to EN 1992-1-1:2004 [1], unless otherwise specified.
\[\rho_{w, \text{min}} = 0.08 \cdot \sqrt{f_c/k_{fy}} = 0.08 \cdot \sqrt{30}/500 = 0.0008763 \] 9.2.2 (5): Eq. 9.5N

\[A_{sw, \text{min}} / s = \rho_{w, \text{min}} \cdot b_w \sin \alpha \]

\[A_{sw, \text{min}} / s = 0.0008763 \cdot 30 \cdot 100 = 2.629 \text{ cm}^2 / m' \]

Required reinforcement:

\[A_{sw, \text{requ}} / s = \frac{V_{Ed}}{f_{yw} \cdot z \cdot \cot \theta} \]

6.2.3 (3): Eq. 6.8

- For \(V_{Ed} < V_{Rd,c} \)

Shear reinforcement not required (min. reinforcement). In this example min. reinforcement is disabled.

\[\cot \theta = \tan \theta = 1.0, \quad b_w = 0.3 \text{ m}, \quad z = 0.477 \text{ m}, \quad \nu_1 = 0.6 \]

\[\alpha_w = 1.0 \]

\[V_{Rd,\text{max}} = 1.0 \cdot 0.3 \cdot 0.477 \cdot 0.60 \cdot \frac{20}{1.0 + 1.0} = 0.85859 \text{ MN} \]

\[V_{Rd,\text{max}} = 858.59 \text{ kN} \]

- For \(V_{Ed} = 63.0 \text{ kN} > V_{Rd,c} = 62.57: \)

Calculating the \(V_{Rd,\text{max}} \) value:

\[V_{Rd,\text{max}} = 0.3 \cdot 0.477 \cdot 0.528 \cdot \frac{20}{2.5 + 0.4} = 0.52108 \text{ MN} \]

\[V_{Rd,\text{max}} = 521.08 \text{ kN} \geq V_{Ed} = 63 \text{ kN} \]

Calculating the \(A_{sw, \text{requ}} / s \) value:

\[A_{sw, \text{requ}} / s = \frac{0.063}{434.78 \cdot 0.477 \cdot 2.5} \cdot 100^2 = 1.2151 \text{ cm}^2 \]

- For \(V_{Ed} = 63 \text{ kN} \text{ and } \cot \theta = 1.0: \)

\[V_{Ed} = 63 \text{ kN} > V_{Rd,c} = 62.51 \text{ kN} \]

Calculating the \(V_{Rd,\text{max}} \) value:

\[V_{Rd,\text{max}} = 0.3 \cdot 0.477 \cdot 0.528 \cdot \frac{20}{1.0 + 1.0} = 0.7555 \text{ MN} \]

\[V_{Rd,\text{max}} = 755.5 \text{ kN} \geq V_{Ed} = 63 \text{ kN} \]

Calculating the \(A_{sw, \text{requ}} / s \) value:

\[A_{sw, \text{requ}} / s = \frac{0.521}{434.78 \cdot 0.477 \cdot 1.0} \cdot 100^2 = 3.037 \text{ cm}^2 \]

- For \(V_{Ed} = 756 \text{ kN} \text{ and } \cot \theta = 1.0: \)

\[V_{Ed} = 756 \text{ kN} > V_{Rd,c} = 62.51 \text{ kN} \]

\[V_{Ed} = 756 \text{ kN} > V_{Rd,\text{max}} = 755.5 \text{ kN} \]

Shear design not possible, because the \(\cot \theta \) value is fixed and can’t
be iterated.

- **For** $V_{Ed} = 521.10\ kN$:

 $V_{Ed} = 521.10\ kN > V_{Rd,c} = 62.51\ kN$

 $V_{Ed} = 521.10\ kN > V_{Rd,max} = 521.08\ kN$

 The $\cot\theta$ value is iterated until $V_{Rd,max} \geq V_{Ed}$

- **For** $V_{Ed} = 450\ kN$:

 $V_{Ed} = 450\ kN > V_{Rd,c} = 62.51\ kN$

 $V_{Ed} = 450\ kN < V_{Rd,max} = 521.08\ kN$

 Calculating the $V_{Rd,max}$ value:

 $V_{Rd,max} = 0.3 \cdot 0.477 \cdot 0.528 \cdot \frac{20}{2.5 + 0.4} = 0.52108\ MN$

 $V_{Rd,max} = 521.08\ kN \geq V_{Ed} = 450\ kN$

 Calculating the $A_{sw,requ}/s$ value:

 $A_{sw,requ}/s = \frac{0.450}{434.78 \cdot 0.477 \cdot 2.5} \cdot 100^2 = 8.679\ cm^2$
5 Conclusion

This example shows the calculation of the required reinforcement for a T-beam under shear force. It has been shown that the results are reproduced with excellent accuracy.

6 Literature