Benchmark Example No. 1

Creep and Shrinkage Calculation using the Model Code 2010

SOFiSTiK | 2020
Overview

Design Code Family(s): MC
Design Code(s): MC 2010
Module(s): AQB, CSM
Input file(s): creep_shrinkage_mc10.dat

1 Problem Description

The problem consists of a simply supported beam with a rectangular cross-section of prestressed concrete, as shown in Fig. 1. The total creep and shrinkage is calculated.

![Figure 1: Problem Description](image)

2 Reference Solution

This example is concerned with the calculation of creep and shrinkage on a prestressed concrete cross-section, subject to bending and prestress force. The content of this problem is covered by the following parts of fib Model Code 2010 [1]:

- Creep and Shrinkage (Section 5.1.9.4)
- Temperature effects (Section 5.1.10)

3 Model and Results

Benchmark 17 is here extended for the case of creep and shrinkage developing on a prestressed concrete simply supported beam. In benchmark 18 the calculation was made using DIN EN 1992-1-1:2004 design code. This example will explain the calculation for the case of creep and shrinkage using fib Model Code 2010 [1]. The analysed system can be seen in Fig. 2, with properties as defined in Table 1. Further information about the tendon geometry and prestressing can be found in benchmark 17. The beam consists of a rectangular cross-section and is prestressed and loaded with its own weight. A calculation of the creep and shrinkage is performed with respect to fib Model Code 2010 [1].

<table>
<thead>
<tr>
<th>Material Properties</th>
<th>Geometric Properties</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 35/45</td>
<td>$h = 100.0 \text{ cm}$</td>
<td>$t_0 = 28 \text{ days}$</td>
</tr>
<tr>
<td>Y 1770</td>
<td>$b = 100.0 \text{ cm}$</td>
<td>$t_s = 0 \text{ days}$</td>
</tr>
</tbody>
</table>
Table 1: (continued)

<table>
<thead>
<tr>
<th>Material Properties</th>
<th>Geometric Properties</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH = 80 %</td>
<td>L = 20.0 m</td>
<td>t = 36500 days</td>
</tr>
<tr>
<td></td>
<td>A_P = 28.5 cm²</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Simply Supported Beam

Table 2: Results

<table>
<thead>
<tr>
<th>Result</th>
<th>AQB</th>
<th>CSM+AQB</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_{cs})</td>
<td>(-27.8 \cdot 10^{-5})</td>
<td>(-27.8 \cdot 10^{-5})</td>
<td>(-27.82 \cdot 10^{-5})</td>
</tr>
<tr>
<td>(\phi_{bc}(t, t_0))</td>
<td>1.57</td>
<td>1.561</td>
<td>1.563</td>
</tr>
</tbody>
</table>

Note: The results from SOFiSTiK are rounded for output.
4 Design Process

Design with respect to fib Model Code 2010 [1]

Material:

Concrete: C 35/45

\[E_{cm} = 35000 \text{ N/mm}^2 \]

\[f_{ck} = 35 \text{ N/mm}^2 \]

\[f_{cm} = 43 \text{ N/mm}^2 \]

Prestressing Steel: Y 1770

\[E_p = 195000 \text{ N/mm}^2 \]

\[f_{pk} = 1770 \text{ N/mm}^2 \]

CALCULATION OF TOTAL SHRINKAGE AND SWELLING at \(x = 10.0 \text{ m midspan} \):

\[t_0 = 28 \text{ days} \]

\[t_s = 0 \text{ days} \]

\[t = 36500 \text{ days} \]

\[\epsilon_{cs}(t, t_s) = \epsilon_{cbs}(t) + \epsilon_{cds}(t, t_s) \]

Calculating the basic shrinkage:

\[\epsilon_{cbs}(t) = \epsilon_{cbs0}(f_{cm}) \cdot \beta_{bs}(t) \]

\[\epsilon(f_{cm}) = -\alpha_{bs} \cdot \left(\frac{0.1 \cdot f_{cm}}{6 + 0.1 \cdot f_{cm}} \right)^{2.5} \cdot 10^{-6} \]

\[\alpha_{bs} = 700 \text{ for N class of cement} \]

\[\epsilon(f_{cm}) = -700 \cdot \left(\frac{0.1 \cdot 43}{6 + 0.1 \cdot 43} \right)^{2.5} \cdot 10^{-6} \]

\[\epsilon(f_{cm}) = -7.8827 \cdot 10^{-5} \]

The development of drying shrinkage strain in time strongly depends on \(\beta_{ds}(t, t_s) \) factor. SOFiSTiK accounts not only for the age at start of drying \(t_s \) but also for the influence of the age of prestressing \(t_0 \). Therefore, the calculation of factor \(\beta_{ds} \) reads:

\[\beta_{ds}(t) = 1 - \exp(-0.2 \cdot \sqrt{t}) - (1 - \exp(-0.2 \cdot \sqrt{t_0})) \]

\[\beta_{ds}(t) = 1 - \exp(-0.2 \cdot \sqrt{36500}) - (1 - \exp(-0.2 \cdot \sqrt{28})) \]

\[\beta_{ds}(t) = 1 - \exp(-38.2099) - (1 - \exp(-1.0583)) \]

\[\beta_{ds}(t) = 0.347 \]
The basic shrinkage is calculated:
\[
\varepsilon_{cbs}(t) = \varepsilon_{cbs0}(f_{cm}) \cdot \beta_{bs}(t)
\]

5.1.9.4.4: Eq. 5.1-76
\[
\varepsilon_{cbs}(t) = -7.8827 \cdot 10^{-5} \cdot 0.347
\]
\[
\varepsilon_{cbs}(t) = -0.0002735269 = -2.735 \cdot 10^{-5}
\]

Calculating the drying shrinkage:

5.1.9.4.4: Eq. 5.1-77
\[
\varepsilon_{cds}(t, t_s) = \varepsilon_{cbs0}(f_{cm}) \cdot \beta_{RH}(RH) \cdot \beta_{ds}(t - t_s)
\]

The drying shrinkage is calculated \(\varepsilon_{cds}(t, t_s)\) by means of the notional drying shrinkage coefficient \(\varepsilon_{cbs0}(f_{cm})\), the coefficient \(\beta_{RH}\), taking into account the effect of the ambient relative humidity, and the function \(\beta_{ds}(t - t_s)\) describing the time development:

5.1.9.4.4: Eq. 5.1-80
\[
\varepsilon_{cds0} = [(220 + 110 \cdot \alpha_{ds1}) \cdot \exp(-\alpha_{ds2} \cdot f_{cm})] \cdot 10^{-6}
\]

See table 5.1-12

Coefficients \((\alpha_{ds1})\) are depending on the type of cement.

For normal class type of cement:
\[
\alpha_{ds1} = 4
\]
\[
\alpha_{ds2} = 0.012
\]
\[
\varepsilon_{cds0}(f_{cm}) = [(220 + 110 \cdot 4) \cdot \exp(-0.012 \cdot f_{cm})] \cdot 10^{-6}
\]
\[
\varepsilon_{cbs0}(f_{cm}) = [660 \cdot \exp(-0.516)] \cdot 10^{-6}
\]
\[
\varepsilon_{cds0}(f_{cm}) = 39.39 \cdot 10^{-6}
\]

5.1.9.4.4: Eq. 5.1-81
\[
\beta_{RH} = \begin{cases}
-1.55 \cdot \left[1 - \left(\frac{RH}{100}\right)^3\right], & \text{for } 40 \leq RH < 99\% \cdot \beta_{s1} \\
0.25, & \text{for } RH \geq 99\% \cdot \beta_{s1}
\end{cases}
\]
\[
\beta_{s1} = \left(\frac{35}{f_{cm}}\right)^{0.1} \leq 1.0
\]

5.1.9.4.4: Eq. 5.1-83
\[
\beta_{s1} = \left(\frac{35}{43}\right)^{0.1} = 0.9796 \leq 1.0
\]
\[
99\% \cdot \beta_{s1} = 99 \cdot 0.9796 = 96.98
\]
\[
\beta_{RH} = -1.55 \cdot \left[1 - \left(\frac{80}{100}\right)^3\right] = -0.7564
\]

SOFISTiK accounts not only for the age at start of drying \(t_s\) but also for the influence of the age of prestressing, so the time development function reads:

5.1.9.4.4: Eq. 5.1-82
\[
\beta_{ds}(t - t_s) = \sqrt{\frac{t - t_s}{0.035 \cdot h^2 + (t - t_s)}} - \sqrt{\frac{t_0 - t_s}{0.035 \cdot h^2 + (t_0 - t_s)}}
\]
\[
\beta_{ds}(t - t_s) = \frac{36500}{0.035 \cdot 500^2 + 36500} - \frac{28}{0.035 \cdot 500^2 + 28}
\]
\[
\beta_{ds}(t - t_s) = 0.8981 - 0.05669 = 0.8416
\]

The drying shrinkage is calculated:
\[
\varepsilon_{cds}(t, t_s) = \varepsilon_{cbs0}(f_{cm}) \cdot \beta_{RH} \cdot \beta_{ds}(t - t_s)
\]
\[\varepsilon_{cds}(t, t_s) = 39.39 \cdot 10^{-5} \cdot (-0.7564) \cdot 0.8416 \]
\[\varepsilon_{cds}(t, t_s) = -25.08 \cdot 10^{-5} \]

The total shrinkage or swelling strain is calculated:
\[\varepsilon_{cs}(t, t_s) = \varepsilon_{cds}(t) + \varepsilon_{cds}(t, t_s) \]
\[\varepsilon_{cs}(t, t_s) = (-2.735 + (-25.08)) \cdot 10^{-5} = -27.82 \cdot 10^{-5} \]

CALCULATION OF TOTAL CREEP at x = 10.0 m midspan:

The creep coefficient:
\[\phi(t, t_0) = \phi_{bc}(t, t_0) + \phi_{dc}(t, t_0) \]

Calculating the basic creep:
\[\phi_{bc}(t, t_0) = \beta(f_{cm}) \cdot \beta_{bc}(t, t_0) \]
with:
\[\beta_{bc}(f_{cm}) = \frac{1.8}{(63)^{0.7}} = 0.12937 \]
and the time development function:
\[\beta_{bc}(t, t_0) = \ln \left(\frac{30}{t_{0,\text{adj}} + 0.035} \right)^2 \cdot (t - t_0) + 1 \]
\[t_{0,\text{adj}} = t_{0,T} \cdot \left[\frac{9}{2 + t_{0,T}^2} - 1 \right] \geq 0.5 \text{ days} \]
\[t_T = \sum_{i=1}^{n} \Delta t_i \cdot \exp \left[13.65 - \frac{4000}{273 + 7(\Delta t_i)} \right] \]
\[t_{0,T} = \sum_{i=1}^{n} 28 \cdot \exp \left[13.65 - \frac{4000}{273 + 20} \right] = 27.947 \text{ days} \]
\[\alpha = 0 \text{ for N class cement} \]
\[t_{0,\text{adj}} = 27.947 \cdot \left[\frac{9}{2 + 27.947^{1.2}} + 1 \right]^0 = 27.947 \geq 0.5 \text{ days} \]
\[\beta_{bc}(t, t_0) = \ln \left(\frac{30}{27.947} + 0.035 \right)^2 \cdot 36472 + 1 \]
\[\beta_{bc}(t, t_0) = 10.71 \]

The basic creep coefficient:
\[\phi_{bc}(t, t_0) = 0.12937 \cdot 10.71 = 1.385 \]

Calculating the drying creep:

The drying coefficient may be estimated from:
\[\phi_{dc}(t, t_0) = \beta_{drcm} \cdot \beta(RH) \cdot \beta_{dc}(t_0) \cdot \beta_{dc}(t, t_0) \]
with:
\[\beta_{dc}(f_{cm}) = \frac{412}{(f_{cm})^{1.4}} = 2.1283 \]
5.1.9.4.3(b): Eq. 5.1-69
\[
\beta(RH) = \frac{1 - RH}{100} = \frac{1 - \frac{80}{100}}{100} = 0.251
\]

5.1.9.4.3: Eq. 5.1-70
\[
\beta_{dc}(t_0) = \frac{1}{0.1 + t_{0,adj}^{0.2}} = \frac{1}{0.1 + 27.947} = 0.4886
\]

5.1.9.4.3(b): Eq. 5.1-71a; \(\beta_{dc}(t_0, t_0) \) the development of drying creep with time
\[
\beta_{dc}(t, t_0) = \left[\frac{t - t_0}{\beta_h + (t - t_0)} \right]^{\gamma(t_0)}
\]
with:
\[
\gamma(t_0) = \frac{1}{2 + \frac{3.5}{\sqrt{t_{0,adj}}}} = \frac{1}{2.962} = 0.3376
\]

5.1.9.4.3: Eq. 5.1-71b
\[
\alpha_{fcm} = \sqrt{\frac{35}{f_{cm}}} = \sqrt{\frac{35}{43}} = 0.9021
\]

5.1.9.4.3: Eq. 5.1-71c
\[
\beta_h = 1.5 \cdot h + 250 \cdot \alpha_{fcm} \leq 1500 \cdot \alpha_{fcm}
\]
\[
\beta_h = 1.5 \cdot 500 + 250 \cdot 0.9021 = 975.548 \leq 1352.15
\]

5.1.9.4.3: Eq. 5.1-71a
\[
\beta_{dc}(t, t_0) = \left[\frac{36500 - 28}{975.548 + (36500 - 28)} \right]^{0.3376} = 0.9911
\]

The drying creep coefficient:
\[
\phi_{bc}(t, t_0) = 2.1283 \cdot 0.251 \cdot 0.4886 \cdot 0.9911 = 0.2597
\]

The total creep coefficient:
\[
\phi(t, t_0) = \phi_{bc}(t, t_0) + \phi_{dc}(t, t_0)
\]
\[
\phi(t, t_0) = 1.385 + 0.2587 = 1.64
\]

According to Model Code 2010 [1], the creep value is related to the tangent Young’s modulus \(E_c \), where \(E_c \) being defined as \(1.05 \cdot E_{cm} \). To account for this, SOFiSTiK adopts this scaling for the computed creep coefficient (in SOFiSTiK, all computations are consistently based on \(E_{cm} \).
\[
\phi(t, t_0) = 1.64/1.05 = 1.56
\]
5 Conclusion

This example shows the calculation of the creep and shrinkage using fib Model Code 2010 [1]. It has been shown that the results are in very good agreement with the reference solution.

6 Literature