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Equivalent Linear Temperature Load

Overview
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Module(s): SOFiLOAD

Input file(s): eqv linear temp load.dat

1 Problem Description

The following example is focused on verifying the effects of the nonlinear temperature gradient along
the height of a beam’s cross section. A simply supported beam (Figure 1a) is analyzed with the cor-
responding temperature distribution (heating and cooling profiles) in the cross section (Figure 1b). The
internal stresses due to the nonlinear temperature gradient can be divided into stresses due to uniform
and linear temperature component and into remaining self-equilibrating eigenstresses [1].

Figure 1: (a) Simply supported beam; (b) Cross section with corresponding heating and cooling profiles

2 Reference Solution

The reference solution is calculated analytically from the stress distribution corresponding to the re-
strained conditions, which is obtained by multiplying the assigned temperature profile with the coefficient
of thermal expansion αt and the modulus of elasticity E [2, 3] :

σT(z) = −EαtΔT(z), (1)

Stress due to the restraining axial force is derived by integrating the stresses σT(z) multiplied with the
corresponding width b(z) over the cross section height and dividing the value with the cross-section
area A [2, 3]. The same stress value can be obtained by multiplying the equivalent uniform (constant)
temperature component ΔTeq with the coefficient of thermal expansion and the modulus of elasticity
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(Figure 2b):

σcons =
1

A

∫ h

0
σT(z)b(z)dz = −EαtΔTeq (2)

Stresses due to the restraining moment are calculated by taking moments around the centroid of the
cross section and dividing the values with the section modulus [2, 3]. Correspondingly, the linear tem-
perature distribution multiplied with the coefficient of thermal expansion and the modulus of elasticity
(Figure 2c) yields the same stress values. Hence, the equivalent linear temperature component ΔTz,eq
can be derived from the following expression:

σne =
1

/h

∫ h

0
σT(z)b(z)(z − z̄)dz = −EαtΔTz,eq (3)
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Figure 2: (a) Restrained stresses; (b) Stresses due to the equivalent uniform temperature; (c) Stresses
due to the equivalent linear temperature; (d) Self-equilibrating eigenstresses

In case of a simply supported beam, it is free to expand and bend. Therefore, the corresponding strain
distributions are generated. The differences between the restrained stress distribution and that which
result in axial and bending strains, are trapped in the section and are known as self-equilibrating eigen-
stresses [3].

3 Model and Results

Two different cross-sections with the corresponding nonlinear temperature gradient are investigated:
a concrete T-beam and a composite cross-section. The used material properties for concrete and
steel are presented in Table 1. The implemented geometry and the temperature loading profiles for
both heating and cooling conditions are shown in Figure 3. The beam’s length is chosen to be 10
m. Reference solution for the same concrete T-beam cross-section, material properties and heating
conditions can be found in [3].
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Table 1: Material Properties

Type of cross section Material properties

T-beam Econc = 35000MP

αt,conc = 1.2 × 10−5 K−

Composite cross section Econc = 35000MP Estee = 210000MP

αt,conc = 1.2 × 10−5 K− αt,stee = 1.2 × 10−5 K−
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-8.0 °C
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-6.3 °C

13.0°C

4.0°C

-3.5 °C
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-8.0 °C

Heating Cooling

Heating Cooling

a)

b)

Figure 3: (a) T-beam concrete cross section - geometry [cm] with assigned temperature profiles; (b)
Composite cross section - geometry [cm] with assigned temperature profiles

The calculated values of the equivalent uniform and linear temperature component are compared with
the reference values in Table 2.

Table 2: Results

ΔTeq ΔTz,eq

[◦C] [◦C]

T-beam Heating SOF. 4.600 −11.096

Ref.[3] 4.600 −11.096

|er | [%] 0.00 0.00

Cooling SOF. −3.544 4.704

Ref. −3.544 4.704

|er | [%] 0.00 0.00
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Table 2: (continued)

ΔTeq ΔTz,eq

[◦C] [◦C]

Composite Heating SOF. 5.111 −9.740

Ref. 5.111 −9.740

|er | [%] 0.00 0.00

Cooling SOF. −2.047 −7.371

Ref. −2.047 −7.371

|er | [%] 0.00 0.00

Calculated eigenstresses for a simply supported beam with the T-beam cross-section are shown in Fig-
ure 4. Results for the temperature heating profile calculated in [3] correspond nicely with the SOFiSTiK
calculated eigenstresses (Figure 4a).
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Figure 4: Eigenstresses for the T-beam cross-section in N/mm2

4 Conclusion

An excellent agreement between the reference solution and the numerical results calculated by
SOFiSTiK verifies that the effects of the nonlinear temperature gradient are adequately taken into ac-
count.
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