SOFiSTiK

DIRECT. ALIGNED. TO THE POINT.

Benchmark Example No. 10
Verification of Beam and Section Types II

SOFiSTiK | 2024

VERiFiCATION

BE10 Verification of Beam and Section Types II

VERiFiCATiON Manual, Service Pack 2024-4 Build 27
Copyright © 2024 by SOFiSTiK AG, Nuremberg, Germany.

SOFiSTIK AG

HQ Nuremberg	Office Garching
Flataustraße 14	Parkring 2
90411 Nürnberg	85748 Garching bei München
Germany	Germany
T +49 (0)911 39901-0	$\mathrm{T}+49(0) 89$ 315878-0
$\mathrm{F}+49(0) 911$ 397904	info@sofistik.com www.sofistik.com

This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release new editions of this manual.

The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that either one is completely error free. Errors and omissions are corrected as soon as they are detected.

The user of the program is solely responsible for the applications. We strongly encourage the user to test the correctness of all calculations at least by random sampling.

Front Cover

Overview

```
Element Type(s): B3D
Analysis Type(s): STAT
Procedure(s):
Topic(s):
Module(s): ASE
Input file(s): cross_sections_ii_FEM.dat, cross_sections_ii_BEM.dat
```


1 Problem Description

The problem consists of a cantilever beam as shown in Fig. 1. For the first case analysed, a transverse load is applied at the end of the beam. For the second case, a moment is applied around the x axis. The various cross-section types analysed in Benchmark Example 9 are used, in order to test the behaviour of the beam associated with each of the section definitions.

Figure 1: Problem Description

2 Reference Solution

For a Bernoulli beam and a linear elastic material behaviour, the maximum deflection $\delta_{\max }$ of the cantilever, under the action of a transverse load P, occurs at the tip and is [1]:
$\delta_{\max }=\frac{P L^{3}}{3 E I^{\prime}}$,
and the rotation ϕ_{z}
$\phi_{z}=\frac{P L^{2}}{2 E I}$.

For the case of the moment M, applied at the χ-axis the angle of twist ϕ_{x} is [2]:
$\phi_{x}=\frac{M L}{G I_{T}}$,
where G is the shear modulus, $E I$ the flexural rigidity and I_{T} the torsional moment.

3 Model and Results

The properties of the model and the cross-sections analysed, are defined in Table 1. For all crosssections the shear deformation areas A_{y} and A_{z} are given equal to zero, in order to consider a Bernoulli beam formulation which doesn't account for shear deformations.

Table 1: Model Properties

Material Properties	Cross-sectional Properties	Loading
$E=30 \mathrm{MPa}$	$L=1 \mathrm{~m}$	$P=1 \mathrm{kN}$
$\nu=0.3$	$h=100 \mathrm{~mm}$	$M=1 \mathrm{kNm}$
	$t=10 \mathrm{~mm}$	
	$b=100 \mathrm{~mm}$	
	$D=100 \mathrm{~mm}$	

Table 2: Results Case 1

Type	$u_{y}[m]$		$\begin{gathered} \left\|e_{r}\right\| \\ {[\%]} \end{gathered}$	$\phi_{z}[\mathrm{mrad}]$		$\begin{array}{r} \left\|e_{r}\right\| \\ {[\%]} \end{array}$
	SOF.	Ref.		SOF.	Ref.	
square -srec	1.333	1.333	0.00	2.000	2.000	0.00
rectangular -srec	1333.333	1333.333	0.00	2000.000	2000.000	0.00
circul -scit	2.264	2.264	0.00	3.395	3.395	0.00
circul -tube	2.264	2.264	0.00	3.395	3.395	0.00
pipe -scit	3.834	3.834	0.00	5.751	5.751	0.00
pipe -tube	3.834	3.834	0.00	5.751	5.751	0.00
Tbeam -poly	6.173	6.173	0.00	9.259	9.259	0.00
Tbeam -plat	6.126	6.078	0.80	9.189	9.116	0.80
Ibeam -poly	2.473	2.473	0.00	3.709	3.709	0.00
Ibeam -plat	2.386	2.377	0.36	3.578	3.566	0.36
Ibeam -weld	2.482	2.473	0.37	3.723	3.709	0.37
square box -poly	2.258	2.258	0.00	3.388	3.388	0.00
square box -plat	2.286	2.279	0.31	3.429	3.419	0.31
square box open -plat	2.286	2.279	0.31	3.429	3.419	0.31
rectang. box -poly	1.236	1.236	0.00	1.855	1.855	0.00
rectang. box-plat	1.247	1.250	0.21	1.871	1.874	0.21
C-beam -poly	0.485	0.485	0.00	0.727	0.727	0.00

Table 2: (continued)

Type	$u_{y}[m]$		$\begin{gathered} \left\|e_{r}\right\| \\ {[\%]} \end{gathered}$	$\phi_{z}[\mathrm{mrad}]$		$\begin{gathered} \left\|e_{r}\right\| \\ {[\%]} \end{gathered}$
	SOF.	Ref.		SOF.	Ref.	
C-beam -plat	0.486	0.486	0.07	0.729	0.728	0.07
L-beam -poly	6.173	6.173	0.00	9.259	9.259	0.00
L-beam -weld	6.199	6.173	0.42	9.298	9.259	0.42
L-beam -plat	6.221	6.193	0.44	9.331	9.290	0.44

The cross-sections types are modelled in various ways in AQUA as shown in Benchmark Example 9. The results are presented in Table 2 for the case of the transverse load P and in Table 3 for the case of the moment M. For the non-circular cross sections modelled with -POLY, both the results calculated with the boundary element method (BEM) and the finite element method (FEM) are presented in Table 3. It should be noted, that the calculated angle of twist for the square and rectangular box cross section modelled with -POLY (FEM), denoted with a star in Table 3, corresponds to a relatively coarse default finite element mesh. For the investigated box sections with relatively thin walls, a better approximation in regard to the reference values can be obtained by implementing a finer element mesh.

Table 3: Results Case 2

		$\phi_{x}[\mathrm{mrad}]$	$\left\|e_{r}\right\|$
Type	SOF.	Ref.	$[\%]$
	6.165	6.190	0.41
square -srec	2774.886	2768.903	0.22
rectangular -srec	8.828	8.828	0.00
circul -scit	8.828	8.828	0.00
circul -tube	14.952	14.952	0.00
pipe -scit	14.952	14.952	0.00
pipe -tube	1343.070	1368.421	1.85
Tbeam -poly (BEM)	1359.899		0.62
Tbeam -poly (FEM)	1333.333	1333.333	0.00
Tbeam -plat	910.375	928.571	1.96
Ibeam -poly (BEM)	895.95		3.51
lbeam -poly (FEM)	896.552	896.552	0.00
lbeam -plat	928.571	928.571	0.00
lbeam -weld	11.227	11.888	5.56
square box -poly (BEM)	$10.886 \star$		8.43
square box -poly (FEM - default mesh)	11.221		5.61
square box -poly (FEM - finer mesh: HDIV 2 [mm])			

Table 3: (continued)

	$\phi_{x}[\mathrm{mrad}]$		
Type	\|er \mid		
	SOF.	Ref.	[\%]
square box -plat	11.696	11.888	1.62
square box open -plat	723.428	722.222	0.17
rectang. box -poly (BEM)	3.991	4.149	3.83
rectang. box -poly (FEM - default mesh)	$3.914 \star$		5.67
rectang. box -poly (FEM - finer mesh: HDIV 2 [mm])	3.998		3.64
rectang. box -plat	4.113	4.149	0.89
C-beam -poly (BEM)	652.274	684.211	4.67
C-beam -poly (FEM)	679.255		0.72
C-beam -plat	684.210	684.211	0.00
L-beam -poly (BEM)	1365.51	1368.421	0.21
L-beam -poly (FEM)	1385.289	1368.421	1.23
L-beam -weld	1368.421	1368.421	0.00
L-beam -plat	1368.421	1368.421	0.00

From the above results, and with respect to the results of Benchmark Example 9, we can see that the differences are a direct influence of the calculations of the properties of the cross-sections according to their definition in AQUA, and are not associated to the beam formulation. This can also be verified, if instead of, e.g. the reference value for $I_{y_{\text {REF }}}$, the calculated value is used $I_{\text {yCALC }}$ in Eq. 1 . Then the error is eliminated for all the cross-sections types.

4 Conclusion

This example presents the influence of the cross-sections types, for the case of a simple cantilever beam. It has been shown that the behaviour of the beam is accurately captured.

5 Literature

[1] K. Holschemacher. Entwurfs- und Berechnungstafeln für Bauingenieure. 3rd. Bauwerk, 2007.
[2] C. Petersen. Stahlbau. 2nd. Vieweg, 1990.

